scholarly journals Double Nanowires for Hybrid Quantum Devices

2021 ◽  
pp. 2107926
Author(s):  
Thomas Kanne ◽  
Dags Olsteins ◽  
Mikelis Marnauza ◽  
Alexandros Vekris ◽  
Juan Carlos Estrada Saldaña ◽  
...  
Keyword(s):  
1999 ◽  
Author(s):  
Konstantin K. Likharev ◽  
P. Bunyk ◽  
W. Chao ◽  
T. Filippov ◽  
Y. Kameda
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Israel F. Araujo ◽  
Daniel K. Park ◽  
Francesco Petruccione ◽  
Adenilton J. da Silva

AbstractAdvantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with exponential time advantage using a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuanjie Chen ◽  
Shaoyun Huang ◽  
Dong Pan ◽  
Jianhong Xue ◽  
Li Zhang ◽  
...  

AbstractA dual-gate InSb nanosheet field-effect device is realized and is used to investigate the physical origin and the controllability of the spin–orbit interaction in a narrow bandgap semiconductor InSb nanosheet. We demonstrate that by applying a voltage over the dual gate, efficiently tuning of the spin–orbit interaction in the InSb nanosheet can be achieved. We also find the presence of an intrinsic spin–orbit interaction in the InSb nanosheet at zero dual-gate voltage and identify its physical origin as a build-in asymmetry in the device layer structure. Having a strong and controllable spin–orbit interaction in an InSb nanosheet could simplify the design and realization of spintronic deceives, spin-based quantum devices, and topological quantum devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 788
Author(s):  
Jian-Huan Wang ◽  
Ting Wang ◽  
Jian-Jun Zhang

Controllable growth of wafer-scale in-plane nanowires (NWs) is a prerequisite for achieving addressable and scalable NW-based quantum devices. Here, by introducing molecular beam epitaxy on patterned Si structures, we demonstrate the wafer-scale epitaxial growth of site-controlled in-plane Si, SiGe, and Ge/Si core/shell NW arrays on Si (001) substrate. The epitaxially grown Si, SiGe, and Ge/Si core/shell NW are highly homogeneous with well-defined facets. Suspended Si NWs with four {111} facets and a side width of about 25 nm are observed. Characterizations including high resolution transmission electron microscopy (HRTEM) confirm the high quality of these epitaxial NWs.


2021 ◽  
Vol 118 (16) ◽  
pp. 162108
Author(s):  
Y. Jin ◽  
M. Moreno ◽  
P. M. T. Vianez ◽  
W. K. Tan ◽  
J. P. Griffiths ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Miguel Camacho ◽  
Brian Edwards ◽  
Nader Engheta

AbstractIn the search for improved computational capabilities, conventional microelectronic computers are facing various problems arising from the miniaturization and concentration of active electronics. Therefore, researchers have explored wave systems, such as photonic or quantum devices, for solving mathematical problems at higher speeds and larger capacities. However, previous devices have not fully exploited the linearity of the wave equation, which as we show here, allows for the simultaneous parallel solution of several independent mathematical problems within the same device. Here we demonstrate that a transmissive cavity filled with a judiciously tailored dielectric distribution and embedded in a multi-frequency feedback loop can calculate the solutions of a number of mathematical problems simultaneously. We design, build, and test a computing structure at microwave frequencies that solves two independent integral equations with any two arbitrary inputs and also provide numerical results for the calculation of the inverse of four 5 x 5 matrices.


2020 ◽  
Vol 10 (4) ◽  
pp. 1353 ◽  
Author(s):  
Jinjing Shi ◽  
Shuhui Chen ◽  
Jiali Liu ◽  
Fangfang Li ◽  
Yanyan Feng ◽  
...  

A novel encryption algorithm called the chained phase-controlled operation (CPCO) is presented in this paper, inspired by CNOT operation, which indicates a stronger correlation among message states and each message state depending on not only its corresponding key but also other message states and their associated keys. Thus, it can prevent forgery effectively. According to the encryption algorithm CPCO and the classical dual signature protocols, a quantum dual signature scheme based on coherent states is proposed in this paper. It involves three participants, the customer Alice, the merchant Bob and the bank Trent. Alice expects to send her order message and payment message to Bob and Trent, respectively. It is required that the two messages must be linked to guarantee the payment is paid for the corresponding order. Thus, Alice can generate a quantum dual signature to achieve the goal. In detail, Alice firstly signs her two messages with the shared secret key. Then She connects the two signatures into a quantum dual signature. Finally, Bob and Trent severally verify the signatures of the order message and the payment message. Security analysis shows that our scheme can ensure its security against forgery, repudiation and denial. In addition, simulation experiments based on the Strawberry Fields platform are performed to valid the feasibility of CPCO. Experimental results demonstrate that CPCO is viable and the expected coherent states can be acquired with high fidelity, which indicates that the encryption algorithm of the scheme can be implemented on quantum devices effectively.


Sign in / Sign up

Export Citation Format

Share Document