scholarly journals Superdurable Coating Fabricated from a Double-Sided Tape with Long Term “Zero” Bacterial Adhesion

2017 ◽  
Vol 29 (34) ◽  
pp. 1606506 ◽  
Author(s):  
Wei Wang ◽  
Yang Lu ◽  
Hui Zhu ◽  
Zhiqiang Cao
Keyword(s):  
Soft Matter ◽  
2021 ◽  
Author(s):  
Nicolas Lavielle ◽  
Dalal Asker ◽  
Benjamin D. Hatton

Swollen iPDMS silicones generate a liquid interface through syneresis to prevent bacterial adhesion.


2017 ◽  
Vol 2 (1) ◽  
pp. 63-72 ◽  
Author(s):  
C.L. Romanò ◽  
E. De Vecchi ◽  
M. Bortolin ◽  
I. Morelli ◽  
L. Drago

Abstract. Living in biofilms is probably the most common condition for bacteria and fungi and biofilm-related infections account for the majority of bacterial infectious diseases worldwide.Among others biofilm-related infections, those associated with implanted biomaterials have an enormous and still largely underestimated impact in orthopaedics and trauma, cardio-surgery and several other surgical disciplines.Given the limited efficacy of existing antibiotics in the prevention and treatment of bacterial biofilms, new strategies are needed to protect implants and host tissues, overcoming the striking ability of the microorganisms to adhere on different surfaces and to immediately protect themselves by forming the biofilm matrix.Adhesion is a necessary first step in microbial colonization and pathogenesis and provides a potential target for new preventive and treatment approach.Among various polymers, tested as antibacterial coatings, hyaluronic acid and some of its composites do offer a well-established long-term safety profile and a proven ability to reduce bacterial adhesion and biofilm formation.Aim of the present review is to summarize the available evidence concerning the antiadhesion/antibiofilm activity of hyaluronic acid and some of its derivatives to reduce/prevent bacterial adhesion and biofilm formation in various experimental and clinical settings.


Langmuir ◽  
2016 ◽  
Vol 32 (31) ◽  
pp. 7866-7874 ◽  
Author(s):  
Qingsheng Liu ◽  
Wenchen Li ◽  
Hua Wang ◽  
Bi-min Zhang Newby ◽  
Fang Cheng ◽  
...  

2016 ◽  
Vol 7 (4) ◽  
pp. 195-198 ◽  
Author(s):  
Varun Yarramaneni ◽  
Dhanasekar Balakrishnan ◽  
IN Aparna ◽  
Akanksha Sachdeva ◽  
Nayana Prabhu

ABSTRACT Dental implants are the modern marvel and are widely accepted as a reconstructive treatment modality for tooth replacement. In recent times, there has been a marked progress in the clinical success rates of dental implants, but implant failures as a result of infections are continuing at an alarming rate of 8% per year, translating into 1 million failures worldwide. Perimucositis and peri-implantitis are the chief complications reported postimplant surgery that effects its short- and long-term success. Peri-implantitis is characterized by clinical and radiological bone loss around the implant accompanied with an inflammatory reaction of the peri-implant mucosa and is an irreversible condition, whereas perimucositis is a reversible inflammatory change. Implant surfaces provide an ideal substrate for bacterial adhesion forming a biofilm. Biofilm performs vast functions ranging from physical defensive barrier against phagocytic predation to working as a selective permeable barrier. This limits the diffusion of systemic antimicrobial agents that are capable of damaging the bacterial complexes. These rapidly growing bacteria give rise to a chronic infection which is difficult to eradicate by conventional antibiotic therapy. To inhibit peri-implant infections, various functional modifications in the implant surfaces have been suggested. The coatings on the titanium implant are incorporated with disinfectants, antibiotics as well as antimicrobial peptides AMPs. This paper is an attempt to review all the antibiotic coatings available for a titanium implant and discuss their prospective future to prevent peri-implant infections. How to cite this article Yarramaneni V, Aparna IN, Sachdeva A, Balakrishnan D, Prabhu N. Emerging Antibacterial Coated Dental Implants: A Preventive Measure for Peri-implantitis. World J Dent 2016;7(4):195-198.


2018 ◽  
Vol 33 (6) ◽  
pp. 647-659
Author(s):  
Jun Zhang ◽  
Fuling Feng ◽  
Bing Han ◽  
Dawei Wang ◽  
Lei Fu ◽  
...  

Nanocomposites have been extensively used in many fields. Their properties can be improved or enhanced by the components in the nanocomposites. In this study, we reported the antibacterial activity, cell toxicity, and mechanical property of a three-component nanocomposite which consisted of ultra-high molecular weight polyethylene (UHMWPE), chlorhexidine acetate (CA), and montmorillonite (MMT). This nanocomposite (UHMWPE/CA-MMT) maintained good short-term resistance to bacterial adhesion, and its long-term resistance to bacterial adhesion was significantly improved as the interlayer space in montmorillonite prevented effectively the agglomeration and precipitation of chlorhexidine acetate after the intercalation of chlorhexidine acetate into montmorillonite. Also, its cell toxicity was reduced as the interlayer space in montmorillonite inhibited the release rate of chlorhexidine acetate. In addition, the mechanical property of UHMWPE/CA-MMT was improved because of the synergistic optimization of these three components. These findings suggested that this three-component nanocomposite UHMWPE/CA-MMT may be a promising biomaterial.


2017 ◽  
Vol 97 (1) ◽  
pp. 14-22 ◽  
Author(s):  
N.J. Hickok ◽  
I.M. Shapiro ◽  
A.F. Chen

With the increase in numbers of joint replacements, spinal surgeries, and dental implantations, there is an urgent need to combat implant-associated infection. In addition to stringent sterile techniques, an efficacious way to prevent this destructive complication is to create new implants with antimicrobial properties. Specifically, these implants must be active in the dental implant environment where the implant is bathed in the glycoprotein-rich salivary fluids that enhance bacterial adhesion, and propagation, and biofilm formation. However, in designing an antimicrobial surface, a balance must be struck between antimicrobial activity and the need for the implant to interact with the bone environment. Three types of surfaces have been designed to combat biofilm formation, while attempting to maintain osseous interactions: 1) structured surfaces where topography, usually at the nanoscale, decreases bacterial adhesion sufficiently to retard establishment of infection; 2) surfaces that actively elute antimicrobials to avert bacterial adhesion and promote killing; and 3) surfaces containing permanently bonded agents that generate antimicrobial surfaces that prevent long-term bacterial adhesion. Both topographical and elution surfaces exhibit varying, albeit limited, antimicrobial activity in vitro. With respect to covalent coupling, we present studies on the ability of the permanent antimicrobial surfaces to kill organisms while fostering osseointegration. All approaches have significant drawbacks with respect to stability and efficacy, but the permanent surfaces may have an edge in creating a long-term antibacterial environment.


2019 ◽  
Vol 42 ◽  
Author(s):  
John P. A. Ioannidis

AbstractNeurobiology-based interventions for mental diseases and searches for useful biomarkers of treatment response have largely failed. Clinical trials should assess interventions related to environmental and social stressors, with long-term follow-up; social rather than biological endpoints; personalized outcomes; and suitable cluster, adaptive, and n-of-1 designs. Labor, education, financial, and other social/political decisions should be evaluated for their impacts on mental disease.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


1999 ◽  
Vol 173 ◽  
pp. 189-192
Author(s):  
J. Tichá ◽  
M. Tichý ◽  
Z. Moravec

AbstractA long-term photographic search programme for minor planets was begun at the Kleť Observatory at the end of seventies using a 0.63-m Maksutov telescope, but with insufficient respect for long-arc follow-up astrometry. More than two thousand provisional designations were given to new Kleť discoveries. Since 1993 targeted follow-up astrometry of Kleť candidates has been performed with a 0.57-m reflector equipped with a CCD camera, and reliable orbits for many previous Kleť discoveries have been determined. The photographic programme results in more than 350 numbered minor planets credited to Kleť, one of the world's most prolific discovery sites. Nearly 50 per cent of them were numbered as a consequence of CCD follow-up observations since 1994.This brief summary describes the results of this Kleť photographic minor planet survey between 1977 and 1996. The majority of the Kleť photographic discoveries are main belt asteroids, but two Amor type asteroids and one Trojan have been found.


Sign in / Sign up

Export Citation Format

Share Document