scholarly journals Interaction of Water with Atomic Layer Deposited Titanium Dioxide on p‐Si Photocathode: Modeling of Photoelectrochemical Interfaces in Ultrahigh Vacuum with Cryo‐Photoelectron Spectroscopy

2021 ◽  
pp. 2002257
Author(s):  
Thorsten Cottre ◽  
Mathias Fingerle ◽  
Melanie Kranz ◽  
Thomas Mayer ◽  
Bernhard Kaiser ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1199
Author(s):  
Hojeong Ryu ◽  
Sungjun Kim

This study presents conductance modulation in a Pt/TiO2/HfAlOx/TiN resistive memory device in the compliance region for neuromorphic system applications. First, the chemical and material characteristics of the atomic-layer-deposited films were verified by X-ray photoelectron spectroscopy depth profiling. The low-resistance state was effectively controlled by the compliance current, and the high-resistance state was adjusted by the reset stop voltage. Stable endurance and retention in bipolar resistive switching were achieved. When a compliance current of 1 mA was imposed, only gradual switching was observed in the reset process. Self-compliance was used after an abrupt set transition to achieve a gradual set process. Finally, 10 cycles of long-term potentiation and depression were obtained in the compliance current region for neuromorphic system applications.


2021 ◽  
pp. 138758
Author(s):  
Oili M.E. Ylivaara ◽  
Andreas Langner ◽  
Xuwen Liu ◽  
Dieter Schneider ◽  
Jaakko Julin ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Baojun Yan ◽  
Shulin Liu ◽  
Yuekun Heng ◽  
Yuzhen Yang ◽  
Yang Yu ◽  
...  

2011 ◽  
Vol 1337 ◽  
Author(s):  
B.D. Briggs ◽  
S.M. Bishop ◽  
K.D. Leedy ◽  
B. Butcher ◽  
R. L. Moore ◽  
...  

ABSTRACTHafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfOx active layers in these devices were deposited by atomic layer deposition at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O2 plasma as the reactant. Depth profiles of the HfOx by x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfOx film. This phenomenon has not been previously reported in resistive switching literature and therefore may have gone unnoticed by other investigators. The MIM structures fabricated from the HfOx exhibited non-polar behavior, independent of the top metal electrode (Ni, Pt, Al, Au). These results are analogous to the non-polar switching behavior observed by Yang et al. [2] for intentionally Cu-doped HfOx resistive memory devices. The distinguishing characteristic of the material structure produced in this research is that the copper concentration increases to 60 % in a conducting surface copper oxide layer ~20 nm thick. Lastly, the results from both sweep- and pulse-mode current-voltage measurements are presented and preliminary work on fabricating sub-100 nm devices is summarized.


Author(s):  
A. P. Alekhin ◽  
G. I. Lapushkin ◽  
A. M. Markeev ◽  
A. A. Sigarev ◽  
V. F. Toknova

2021 ◽  
Vol 33 (4) ◽  
pp. 1265-1275
Author(s):  
Matthias H. Richter ◽  
Wen-Hui Cheng ◽  
Ethan J. Crumlin ◽  
Walter S. Drisdell ◽  
Harry A. Atwater ◽  
...  

Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 369 ◽  
Author(s):  
Richard Krumpolec ◽  
Tomáš Homola ◽  
David Cameron ◽  
Josef Humlíček ◽  
Ondřej Caha ◽  
...  

Sequentially pulsed chemical vapour deposition was used to successfully deposit thin nanocrystalline films of copper(I) chloride using an atomic layer deposition system in order to investigate their application to UV optoelectronics. The films were deposited at 125 °C using [Bis(trimethylsilyl)acetylene](hexafluoroacetylacetonato)copper(I) as a Cu precursor and pyridine hydrochloride as a new Cl precursor. The films were analysed by XRD, X-ray photoelectron spectroscopy (XPS), SEM, photoluminescence, and spectroscopic reflectance. Capping layers of aluminium oxide were deposited in situ by ALD (atomic layer deposition) to avoid environmental degradation. The film adopted a polycrystalline zinc blende-structure. The main contaminants were found to be organic materials from the precursor. Photoluminescence showed the characteristic free and bound exciton emissions from CuCl and the characteristic exciton absorption peaks could also be detected by reflectance measurements.


Sign in / Sign up

Export Citation Format

Share Document