X-ray Photoelectron Spectroscopy and Resonant X-ray Spectroscopy Investigations of Interactions between Thin Metal Catalyst Films and Amorphous Titanium Dioxide Photoelectrode Protection Layers

2021 ◽  
Vol 33 (4) ◽  
pp. 1265-1275
Author(s):  
Matthias H. Richter ◽  
Wen-Hui Cheng ◽  
Ethan J. Crumlin ◽  
Walter S. Drisdell ◽  
Harry A. Atwater ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4269 ◽  
Author(s):  
Ewa Paradowska ◽  
Katarzyna Arkusz ◽  
Dorota G. Pijanowska

The increasing interest of attachment of gold nanoparticles (AuNPs) on titanium dioxide nanotubes (TNTs) has been devoted to obtaining tremendous properties suitable for biosensor applications. Achieving precise control of the attachment and shape of AuNPs by methods described in the literature are far from satisfactory. This work shows the comparison of physical adsorption (PA), cyclic voltammetry (CV) and chronoamperometry (CA) methods and the parameters of these methods on TNTs properties. The structural, chemical, phase and electrochemical characterizations of TNTs, Au/TNTs, AuNPs/TNTs are carried out using scanning electron microscopy (SEM), electrochemical impedance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The use of PA methods does not allow the deposition of AuNPs on TNTs. CV allows easily obtaining spherical nanoparticles, for which the diameter increases from 20.3 ± 2.9 nm to 182.3 ± 51.7 nm as a concentration of tetrachloroauric acid solution increase from 0.1 mM to 10 mM. Increasing the AuNPs deposition time in the CA method increases the amount of gold, but the AuNPs diameter does not change (35.0 ± 5 nm). Importantly, the CA method also causes the dissolution of the nanotubes layer from 1000 ± 10.0 nm to 823 ± 15.3 nm. Modification of titanium dioxide nanotubes with gold nanoparticles improved the electron transfer and increased the corrosion resistance, as well as promoted the protein adsorption. Importantly, after the deposition of bovine serum albumin, an almost 5.5-fold (324%) increase in real impedance, compared to TNTs (59%) was observed. We found that the Au nanoparticles—especially those with smaller diameter—promoted the stability of bovine serum albumin binding to the TNTs platform. It confirms that the modification of TNTs with gold nanoparticles allows the development of the best platform for biosensing applications.


2011 ◽  
Vol 76 (11) ◽  
pp. 1335-1346 ◽  
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A series of copper-modified titanium dioxide (Cu/TiO2) nanoparticles were synthesized via one-step sol-gel method. The crystal structure and chemical properties were characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Cu/TiO2nanoparticles were applied to CO2photoconversion and the yield of formaldehyde was used to evaluate the photocatalytic performance. The optimum amount of copper modifying was 0.6 wt.% and the yield of formaldehyde was 946 μmol/gcatunder UV illumination for 6 h. 20 wt.% Cu/TiO2also performed a high photocatalytic activity, which yielded 433 μmol/gcatformaldehyde under UV illumination for 6 h.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 456 ◽  
Author(s):  
Jun-Cheol Lee ◽  
Anantha-Iyengar Gopalan ◽  
Gopalan Saianand ◽  
Kwang-Pill Lee ◽  
Wha-Jung Kim

We report the detailed microstructural, morphological, optical and photocatalytic studies of graphene (G) and manganese (Mn) co-doped titanium dioxide nanowires (TiO2(G–Mn) NWs) prepared through facile combined electrospinning–hydrothermal processes. The as-prepared samples were thoroughly characterized using X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and diffuse reflectance spectroscopy (DRS). XRD studies reveal the formation of mixed anatase-rutile phases or rutile phase depending on the dopant (Mn) precursor concentrations in the electrospinning dope and calcination temperature. The evaluation of lattice parameters revealed that the incorporation of Mn species and carbon atoms in to the lattice of anatase or rutile TiO2 could occur through substituting the sites of oxygen atoms. XPS results confirm the existence of Mn2+/Mn3+ within the TiO2 NW. Raman spectroscopy provides the evidence for structural modification because of the graphene inclusion in TiO2 NW. The optical band gap of G–Mn including TiO2 is much lower than pristine TiO2 as confirmed through UV-vis DRS. The photocatalytic activities were evaluated by nitric oxide (NOx) degradation tests under visible light irradiation. Superior catalytic activity was witnessed for rutile G–Mn-co-doped TiO2 NW over their anatase counterparts. The enhanced photocatalytic property was discussed based on the synergistic effects of doped G and Mn atoms and explained by plausible mechanisms.


2015 ◽  
Vol 245 ◽  
pp. 182-189 ◽  
Author(s):  
Nikolai B. Kondrikov ◽  
Antonina S. Lapina ◽  
Ilya V. Stepanov ◽  
Galina I. Marinina ◽  
Vladimir V. Korochentsev ◽  
...  

The nanotubular titanium dioxide structures were prepared using anodic oxidation. The structural features of surface have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS) techniques. These nanotubular titanium dioxide structures can be used as a sensor in potentiometric indication components of different types of chemical reactions.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 709
Author(s):  
Zohaib Razzaq ◽  
Awais Khalid ◽  
Pervaiz Ahmad ◽  
Muhammad Farooq ◽  
Mayeen Uddin Khandaker ◽  
...  

Titanium dioxide nanoparticles (TiO2-NPs) were synthesized via a facile hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR), and Raman spectroscopy were used to study the structure, morphology, chemical composition, and functional group attached to the as-synthesized TiO2-NPs. These NPs were then used to test their efficacy against various microbes and their potency as effective catalysts. TiO2-NPs are found to have the maximum antibacterial activity against Gram-negative bacterial strains rather than Gram-positive bacteria. The photocatalytic activity of the TiO2-NPs was investigated for the photodegradation of 10 ppm bromophenol blue (BPB) dye by using 0.01 g–0.05 g of catalyst. TiO2-NPs exhibited the removal of 95% BPB, respectively, within 180 min. The TiO2-NPs’ antibacterial and catalytic properties suggest that these may be used in environmental remediation as a cost-effective and environmentally friendly wastewater and air treatment material.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Junjie Qian ◽  
Guanjun Cui ◽  
Mingjun Jing ◽  
Yan Wang ◽  
Min Zhang ◽  
...  

Nitrogen-doped titanium dioxide (N-dopedTiO2) photocatalyst was synthesized from nanotube titanic acid (denoted as NTA; molecular formulaH2Ti2O5·H2O) precursorviaa hydrothermal route in ammonia solution. As-synthesized N-dopedTiO2catalysts were characterized by means of X-ray diffraction, transmission electron microscopy, diffuse reflectance spectrometry, X-ray photoelectron spectroscopy, electron spin resonance spectrometry and Fourier transform infrared spectrometry. It was found that nanotube ammonium titanate (NAT) was produced as an intermediate during the preparation of N-dopedTiO2from NTA, as evidenced by the N1sX-ray photoelectron spectroscopic peak ofNH4 +at 401.7 eV. The catalyst showed much higher activities to the degradation of methylene blue and p-chlorophenol under visible light irradiation than Degussa P25. This could be attributed to the enhanced absorption of N-dopedTiO2in visible light region associated with the formation of single-electron-trapped oxygen vacancies and the inhibition of recombination of photo-generated electron-hole pair by doped nitrogen.


2019 ◽  
Vol 15 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Siti Hajar Alias ◽  
Nurul Najidah Mohamed ◽  
Leaw Wai Loon ◽  
Sheela Chandren

Carbon self-doped titanium dioxide (C/TiO2) photocatalyst was synthesized by a simple sol-gel method using titanium isopropoxide as both the titanium precursor and carbon source. The effects of calcination temperatures in the range of 300 to 700 °C to the structure and physicochemical properties of the C/TiO2 were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) spectroscopy, UV-visible diffuse reflectance (UV-Vis DR) spectroscopy, photoluminescence spectroscopy, N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). XPS results proved the presence of self-doped carbon at the interstitial and substitutional lattice of TiO2. The C/TiO2 calcined at 300 and 400 °C (C/TiO2-300 and C/TiO2-400, respectively) showed mesoporous characteristic and large surface area of about 100 m2 g-1. The C/TiO2 photocatalysts were then tested in the photo-oxidation of styrene under visible light irradiation with aqueous hydrogen peroxide as the oxidizing agent. The C/TiO2 photocatalysts were successfully activated under the irradiation of visible light, where C/TiO2-300 and C/TiO2-400 showed the highest total concentration of products (benzaldehyde and styrene oxide) at 1.1 mmol and 1.0 mmol, respectively.For video presentation, kindly please visit this link:


1995 ◽  
Vol 414 ◽  
Author(s):  
Laurent-Dominique Piveteau ◽  
Louis Schlapbach ◽  
Beat Gasser

AbstractA method for producing titanium dioxide (TiO2) containing hydroxyapatite (HA) crystallite isproposed. Solutions of CaCI2+H3PO4 and TiCL4+HCI combined with KOH are used to precipitatefirst the HA and then the TiO2.The precipitate is then sintered between 900°C and 1000°C for 18 to48 hours. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Energy DispersiveX-ray Analysis (EDX) and scanning electron microscopy (SEM) have been used to determine thecrystallinity, the chemical composition and structure of the samples.


Sign in / Sign up

Export Citation Format

Share Document