Common Patterns in Chaperone Interactions with a Native Client Protein

2018 ◽  
Vol 57 (20) ◽  
pp. 5921-5924 ◽  
Author(s):  
Lichun He ◽  
Sebastian Hiller
2018 ◽  
Vol 16 (1) ◽  
pp. 5-11
Author(s):  
Eléonore Lepvrier ◽  
Daniel Thomas ◽  
Cyrille Garnier

Proposed models of the function of Hsp90 are characterised by high flexibility of the dimeric state and conformational changes regulated by both nucleotide binding and hydrolysis, and by co-chaperone interactions. In addition to its dimeric state, Hsp90 self-associates upon particular stimuli. The Hsp90 dimer is the building block up to the hexamer that we named “cosy nest”, and the dodecamer results from the association of two hexamers. Oligomers exhibit chaperone activity, but their exact mechanism of action has not yet been determined. One of the best ways to elucidate how oligomers might operate is to study their interactions with co-chaperone proteins known to regulate the Hsp90 chaperone cycle, such as p23 and Aha1. In this review, we summarise recent results and conclude that Hsp90 oligomers are key players in the chaperone cycle. Crucible-shaped quaternary structures likely provide an ideal environment for client protein accommodation and folding, as is the case for other Hsp families. Confirmation of the involvement of Hsp90 oligomers in the chaperone cycle and a better understanding of their functionality will allow us to address some of the more enigmatic aspects of Hsp90 activity. Utilising this knowledge, future work will highlight how Hsp90 oligomers and co-chaperones cooperate to build the structures required to fold or refold numerous different client proteins.


2012 ◽  
Vol 40 (2) ◽  
pp. 357-363 ◽  
Author(s):  
Wallace H. Liu ◽  
Mair E.A. Churchill

The eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance. In the present paper, we review recent findings on the histone chaperone interactions that guide the assembly of histones H3 and H4 into chromatin. This evidence supports the concepts of histone post-translational modifications and specific histone chaperone interactions as guiding principles for histone H3/H4 transactions during chromatin assembly.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Julia R Kardon ◽  
Jamie A Moroco ◽  
John R Engen ◽  
Tania A Baker

Mitochondria control the activity, quality, and lifetime of their proteins with an autonomous system of chaperones, but the signals that direct substrate-chaperone interactions and outcomes are poorly understood. We previously discovered that the mitochondrial AAA+ protein unfoldase ClpX (mtClpX) activates the initiating enzyme for heme biosynthesis, 5-aminolevulinic acid synthase (ALAS), by promoting cofactor incorporation. Here, we ask how mtClpX accomplishes this activation. Using S. cerevisiae proteins, we identified sequence and structural features within ALAS that position mtClpX and provide it with a grip for acting on ALAS. Observation of ALAS undergoing remodeling by mtClpX revealed that unfolding is limited to a region extending from the mtClpX-binding site to the active site. Unfolding along this path is required for mtClpX to gate cofactor binding to ALAS. This targeted unfolding contrasts with the global unfolding canonically executed by ClpX homologs and provides insight into how substrate-chaperone interactions direct the outcome of remodeling.


2015 ◽  
Author(s):  
◽  
Jason Neville Sterrenberg

The therapeutic potential of stem cells is already being harnessed in clinical trails. Of even greater therapeutic potential has been the discovery of mechanisms to reprogram differentiated cells into a pluripotent stem cell-like state known as induced pluripotent stem cells (iPSCs). Stem cell nature is governed and maintained by a hierarchy of transcription factors, the apex of which is OCT4. Although much research has elucidated the transcriptional regulation of OCT4, OCT4 regulated gene expression profiles and OCT4 transcriptional activation mechanisms in both stem cell biology and cellular reprogramming to iPSCs, the fundamental biochemistry surrounding the OCT4 transcription factor remains largely unknown. In order to analyze the biochemical relationship between HSP90 and human OCT4 we developed an exogenous active human OCT4 expression model with human OCT4 under transcriptional control of a constitutive promoter. We identified the direct interaction between HSP90 and human OCT4 despite the fact that the proteins predominantly display differential subcellular localizations. We show that HSP90 inhibition resulted in degradation of human OCT4 via the ubiquitin proteasome degradation pathway. As human OCT4 and HSP90 did not interact in the nucleus, we suggest that HSP90 functions in the cytoplasmic stabilization of human OCT4. Our analysis suggests HSP90 inhibition inhibits the transcriptional activity of human OCT4 dimers without affecting monomeric OCT4 activity. Additionally our data suggests that the HSP90 and human OCT4 complex is modulated by phosphorylation events either promoting or abrogating the interaction between HSP90 and human OCT4. Our data suggest that human OCT4 displays the characteristics describing HSP90 client proteins, therefore we identify human OCT4 as a putative HSP90 client protein. The regulation of the transcription factor OCT4 by HSP90 provides fundamental insights into the complex biochemistry of stem cell biology. This may also be suggestive that HSP90 not only regulates stem cell biology by maintaining routine cellular homeostasis but additionally through the direct regulation of pluripotency factors.


2021 ◽  
Author(s):  
Ankan K. Bhadra ◽  
Michael J. Rau ◽  
Jil A. Daw ◽  
James A.J. Fitzpatrick ◽  
Conrad C. Weihl ◽  
...  

Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. In fact, dominant mutations in DNAJB6 (Hsp40/Sis1), an Hsp70 co-chaperone, leads to a protein aggregate myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). DNAJB6 client proteins and co-chaperone interactions in skeletal muscle are not known. Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights, and found that LGMDD1 mutants affect Hsp40 functions. Strikingly, the mutants changed the structure of client protein aggregates, as determined by altered distribution of prion strains. They also impair the Hsp70 ATPase cycle, dimerization, and substrate processing and consequently poison the function of wild-type protein. These results define the mechanisms by which LGMDD1 mutations alter chaperone activity and provide avenues for therapeutic intervention.


The Analyst ◽  
2020 ◽  
Vol 145 (8) ◽  
pp. 3090-3099 ◽  
Author(s):  
Yunlong Zhao ◽  
Igor A. Kaltashov

Identifying structural elements within glycosaminoglycans that enable their interaction with a specific client protein remains a challenging task due to the high degree of both intra- and inter-chain heterogeneity exhibited by this polysaccharide.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kevin Wu ◽  
Frederick Stull ◽  
Changhan Lee ◽  
James C. A. Bardwell

Abstract It is generally assumed that protein clients fold following their release from chaperones instead of folding while remaining chaperone-bound, in part because binding is assumed to constrain the mobility of bound clients. Previously, we made the surprising observation that the ATP-independent chaperone Spy allows its client protein Im7 to fold into the native state while continuously bound to the chaperone. Spy apparently permits sufficient client mobility to allow folding to occur while chaperone bound. Here, we show that strengthening the interaction between Spy and a recently discovered client SH3 strongly inhibits the ability of the client to fold while chaperone bound. The more tightly Spy binds to its client, the more it slows the folding rate of the bound client. Efficient chaperone-mediated folding while bound appears to represent an evolutionary balance between interactions of sufficient strength to mediate folding and interactions that are too tight, which tend to inhibit folding.


Sign in / Sign up

Export Citation Format

Share Document