Thermal hydrolysis of poly(l-lactic acid) films and cytotoxicity of water-soluble degradation products

2015 ◽  
Vol 132 (25) ◽  
pp. n/a-n/a ◽  
Author(s):  
Guoguang Xu ◽  
Xiao Liu ◽  
Yanqun Lin ◽  
Guoshan He ◽  
Wanjuan Wang ◽  
...  
Holzforschung ◽  
2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Natthanon Phaiboonsilpa ◽  
Pramila Tamunaidu ◽  
Shiro Saka

Abstract Two-step hydrolysis of nipa (Nypa fruticans) frond, one of the monocotyledonous angiosperms, was studied in a semi-flow hot-compressed water treatment at 230°C/10 MPa/15 min (first stage) and 270°C/10 MPa/30 min (second stage). In the first stage, hemicelluloses such as O-acetyl-4-O-methylglucuronoarabinoxylan and pectin and para-crystalline cellulose were selectively hydrolyzed, as well as lignin, which was partially decomposed. In the second stage, hydrolysis of crystalline cellulose and some additional decomposition of lignin were observed. In addition, inorganic constituents and free sugars, composed mainly of glucose, fructose, and sucrose, were recovered in cold water (20°C/10 MPa/30 min) prior to these 2 stages. In total, 97.3% of oven-dried nipa frond sample could be solubilized into cold and hot-compressed water. The degradation products in the water-soluble portion were primarily recovered as various saccharides (hydrolyzed moieties of the polyoses), which were later dehydrated, fragmented and isomerized partly. The residual (2.7%) is composed mainly of lignin associated with 0.4% of Si. A decomposition pathway is proposed for O-acetyl-4-O-methylglucuronoarabinoxylan as the major hemicellulose based on its various hydrolyzed products.


1997 ◽  
Vol 87 (1) ◽  
pp. 77-82 ◽  
Author(s):  
U. Smolinska ◽  
M. J. Morra ◽  
G. R. Knudsen ◽  
P. D. Brown

Brassica tissues are potentially useful in the control of Aphanomyces root rot of peas (Pisum sativum), but identity of the responsible compounds and specific impacts of those compounds on the pathogen's infection potential remain uncertain. Brassica napus seed meals and water extracts from these meals were used to determine the effect of glucosinolate hydrolysis products on Aphanomyces euteiches f. sp. pisi. B. napus meal (‘Dwarf Essex’) containing glucosinolates and intact myrosinase, the enzyme responsible for glucosinolate hydrolysis, completely inhibited infection by A. euteiches f. sp. pisi oospores. Water extracts from this meal, likewise, severely inhibited infection by oospores, as well as mycelial growth. Extracts from autoclaved ‘Dwarf Essex’ meal, in which myrosinase was denatured, and a low glucosinolate B. napus variety (‘Stonewall’) produced little disease reduction and had less impact on mycelial growth. Gas chromatographic analysis of Brassica tissues and water extracts confirmed that glucosinolates remained in autoclaved ‘Dwarf Essex’ meal and that ‘Stonewall’ meal contained low glucosinolate concentrations. 5-Vinyloxazolidine-2-thione was identified by mass spectrometry as a dominant glucosinolate hydrolysis product in aqueous extracts of the inhibitory meal. Bioassays conducted with aqueous solutions of this compound reduced mycelial growth, but not to the extent of those from intact ‘Dwarf Essex’ meal. Water-soluble compounds produced from the hydrolysis of glucosinolates in B. napus tissues reduced A. euteiches oospore infection and inhibited mycelial growth, thus, demonstrating potential utility of Brassica species in the control of A. euteiches.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 320
Author(s):  
Arnaud Masselin ◽  
Antoine Rousseau ◽  
Stéphanie Pradeau ◽  
Laure Fort ◽  
Rodolphe Gueret ◽  
...  

Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box–Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1979
Author(s):  
Ho In Lee ◽  
Yun Heo ◽  
Seung-Woon Baek ◽  
Da-Seul Kim ◽  
Duck Hyun Song ◽  
...  

Poly(L-lactic acid) (PLLA) has been used as a biodegradable vascular scaffold (BVS) material due to high mechanical property, biodegradability, and biocompatibility. However, acidic byproducts from hydrolysis of PLLA reduce the pH after the surrounding implanted area and cause inflammatory responses. As a result, severe inflammation, thrombosis, and in-stent restenosis can occur after implantation by using BVS. Additionally, polymers such as PLLA could not find on X-ray computed tomography (CT) because of low radiopacity. To this end, here, we fabricated PLLA films as the surface of BVS and divided PLLA films into two coating layers. At the first layer, PLLA film was coated by 2,3,5-triiodobenzoic acid (TIBA) and magnesium hydroxide (MH) with poly(D,L-lactic acid) (PDLLA) for radiopaque and neutralization of acidic environment, respectively. The second layer of coated PLLA films is composed of polydopamine (PDA) and then cystamine (Cys) for the generation of nitric oxide (NO) release, which is needed for suppression of smooth muscle cells (SMCs) and proliferation of endothelial cells (ECs). The characterization of the film surface was conducted via various analyses. Through the surface modification of PLLA films, they have multifunctional abilities to overcome problems of BVS effectively such as X-ray penetrability, inflammation, thrombosis, and neointimal hyperplasia. These results suggest that the modification of biodegradable PLLA using TIBA, MH, PDA, and Cys will have important potential in implant applications.


2019 ◽  
Vol 37 (No. 4) ◽  
pp. 246-251 ◽  
Author(s):  
Joanna Tkaczewska ◽  
Maciej Wielgosz ◽  
Piotr Kulawik ◽  
Marzena Zajac

The influence of drying temperature on the characteristics and gel properties of gelatine from Cyprinus carpio L. skin was studied. Gelatine was extracted from the carp skin using NaOH and ethanol pre-treatment method, extracted in water in 45°C and then dried in 4 different temperatures: 50, 70, 80°C and freeze-dried. The  electrophoresis and functional properties of gelatines were investigated. Freeze drying allowed to obtain a high gelling force, and all other methods did not give satisfactory results. The proteins in gelatines dried at higher temperatures separated by electrophoresis gave severely blurred bands. It may be explained by thermal hydrolysis of collagen fibrils. Freeze drying is the only effective method for drying this product, which can be used in industry.


2006 ◽  
Vol 28 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Min-tian Gao ◽  
Makoto Hirata ◽  
Eiichi Toorisaka ◽  
Tadashi Hano

Data in Brief ◽  
2021 ◽  
pp. 107323
Author(s):  
Mohamed N.A. Meshref ◽  
Seyed Mohammad Mirsoleimani Azizi ◽  
Wafa Dastyar ◽  
Rasha Maal-Bared ◽  
Bipro Ranjan Dhar

1965 ◽  
Vol 43 (1) ◽  
pp. 30-39 ◽  
Author(s):  
C. T. Bishop ◽  
M. B. Perry ◽  
F. Blank ◽  
F. P. Cooper

A group of polysaccharides, called galactomannans I, were precipitated as their insoluble copper complexes from aqueous solutions of the crude polysaccharides obtained from each of the organisms designated in the title. The five galactomannans I were homogeneous under conditions of electrophoresis and ultracentrifugation and had high positive specific rotations. The major constituent monosaccharide was D-mannose; amounts of D-galactose ranged from nil for the polysaccharide from T. rubrum to 13% for that from T. schönleinii. Methylation and hydrolysis of the five galactomannans I yielded varying amounts of the following: 2,3,5,6-tetra-O-methyl-D-galactose (not present in the products from T. rubrum), 2,3,4,6-tetra-O-methyl-D-mannose, 2,3,4-tri-O-methyl-D-mannose, 2,4,6-tri-O-methyl-D-mannose, 3,4-di-O-methyl-D-mannose, and 3,5-di-O-methyl-D-mannose. Periodate oxidation results agreed with the methylation studies. The gross structural features of each galactomannan I appear to be the same, namely, a basic chain of 1 → 6 linked α-D-mannopyranose units for approximately every 22 of which there is a 1 → 3 linked α-D-mannopyranose residue. Branch points occur along the 1 → 6 linked chain at the C2 positions of the D-mannopyranose units and once in every 45 units at the C2 position of a 1 → 6 linked D-mannofuranose residue. The D-galactose in the polysaccharides is present exclusively as non-reducing terminal furanose units; non-reducing terminal units of D-mannopyranose are also present. The variations in the identities and relative amounts of the non-reducing terminal units were the only apparent differences in the gross structural features within this group of polysaccharides.


Sign in / Sign up

Export Citation Format

Share Document