scholarly journals Improvement in liquid absorption of open‐cell polymeric foam by plasma treatment for food packaging applications

2021 ◽  
pp. 52015
Author(s):  
Alaa Alaizoki ◽  
Christopher Phillips ◽  
David Parker ◽  
Craig Hardwick ◽  
James McGettrick ◽  
...  
Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1249 ◽  
Author(s):  
Denis Mihaela Panaitescu ◽  
Eusebiu Rosini Ionita ◽  
Cristian-Andi Nicolae ◽  
Augusta Raluca Gabor ◽  
Maria Daniela Ionita ◽  
...  

In this work, a new eco-friendly method for the treatment of poly(3-hydroxybutyrate) (PHB) as a candidate for food packaging applications is proposed. Poly(3-hydroxybutyrate) was modified by bacterial cellulose nanofibers (BC) using a melt compounding technique and by plasma treatment or zinc oxide (ZnO) nanoparticle plasma coating for better properties and antibacterial activity. Plasma treatment preserved the thermal stability, crystallinity and melting behavior of PHB‒BC nanocomposites, regardless of the amount of BC nanofibers. However, a remarkable increase of stiffness and strength and an increase of the antibacterial activity were noted. After the plasma treatment, the storage modulus of PHB having 2 wt % BC increases by 19% at room temperature and by 43% at 100 °C. The tensile strength increases as well by 21%. In addition, plasma treatment also inhibits the growth of Staphylococcus aureus and Escherichia coli by 44% and 63%, respectively. The ZnO plasma coating led to important changes in the thermal and mechanical behavior of PHB‒BC nanocomposite as well as in the surface structure and morphology. Strong chemical bonding of the metal nanoparticles on PHB surface following ZnO plasma coating was highlighted by infrared spectroscopy. Moreover, the presence of a continuous layer of self-aggregated ZnO nanoparticles was demonstrated by scanning electron microscopy, ZnO plasma treatment completely inhibiting growth of Staphylococcus aureus. A plasma-treated PHB‒BC nanocomposite is proposed as a green solution for the food packaging industry.


2012 ◽  
Vol 13 (9) ◽  
pp. 1139-1144 ◽  
Author(s):  
R. López ◽  
M. Pascual ◽  
D. García-Sanoguera ◽  
L. Sánchez-Nacher ◽  
R. Balart

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2306
Author(s):  
Nusrat Sharmin ◽  
Chengheng Pang ◽  
Izumi Sone ◽  
James Leon Walsh ◽  
Cecilia Górriz Fernández ◽  
...  

In this study, sodium alginate (SA)-based, eco-friendly nanocomposites films were synthesized for potential food packaging applications using silver nitrate (AgNO3) as the metal precursor, reactive nitrogen and oxygen species (RNOS) created within plasma activated water (PAW), or through cold plasma treatment (CP) as reducing agent and SA as stabilizing agent. The formation of silver nanoparticles (AgNPs) was confirmed via the absorption peaks observed between 440 and 450 nm in UV-vis spectroscopy. The tensile strength (TS) and tensile modulus (TM) of the nanocomposite films were significantly higher than those of the SA films. An increase in the TS was also observed as the AgNP concentration was increased from 1 to 5 mM. The storage modulus (G’) of the nanocomposite solution was higher than that of the SA solution. The synthesis of AgNPs resulted both in a higher solution viscosity and a more marked shear-thinning effect. The synthesized AgNPs showed antimicrobial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The AgNPs were spherical in shape with an average size of 22 nm.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1704 ◽  
Author(s):  
Salma Habib ◽  
Marian Lehocky ◽  
Daniela Vesela ◽  
Petr Humpolíček ◽  
Igor Krupa ◽  
...  

The use of polymers in all aspects of daily life is increasing considerably, so there is high demand for polymers with specific properties. Polymers with antibacterial properties are highly needed in the food and medical industries. Low-density polyethylene (LDPE) is widely used in various industries, especially in food packaging, because it has suitable mechanical and safety properties. Nevertheless, the hydrophobicity of its surface makes it vulnerable to microbial attack and culturing. To enhance antimicrobial activity, a progressive surface modification of LDPE using the antimicrobial agent grafting process was applied. LDPE was first exposed to nonthermal radio-frequency (RF) plasma treatment to activate its surface. This led to the creation of reactive species on the LDPE surface, resulting in the ability to graft antibacterial agents, such as ascorbic acid (ASA), commonly known as vitamin C. ASA is a well-known antioxidant that is used as a food preservative, is essential to biological systems, and is found to be reactive against a number of microorganisms and bacteria. The antimicrobial effect of grafted LDPE with ASA was tested against two strong kinds of bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), with positive results. Surface analyses were performed thoroughly using contact angle measurements and peel tests to measure the wettability or surface free energy and adhesion properties after each modification step. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the surface morphology or topography changes of LDPE caused by plasma treatment and ASA grafting. Surface chemistry was studied by measuring the functional groups and elements introduced to the surface after plasma treatment and ASA grafting, using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). These results showed wettability, adhesion, and roughness changes in the LDPE surface after plasma treatment, as well as after ASA grafting. This is a positive indicator of the ability of ASA to be grafted onto polymeric materials using plasma pretreatment, resulting in enhanced antibacterial activity.


2021 ◽  
Vol 30 ◽  
pp. 100759
Author(s):  
Alaa Alaizoki ◽  
Christopher Phillips ◽  
David Parker ◽  
Craig Hardwick ◽  
Chris Griffiths ◽  
...  

2015 ◽  
Vol 46 (4) ◽  
pp. 182-196 ◽  
Author(s):  
Luke (Lei) Zhu ◽  
Victoria L. Brescoll ◽  
George E. Newman ◽  
Eric Luis Uhlmann

Abstract. The present studies examine how culturally held stereotypes about gender (that women eat more healthfully than men) implicitly influence food preferences. In Study 1, priming masculinity led both male and female participants to prefer unhealthy foods, while priming femininity led both male and female participants to prefer healthy foods. Study 2 extended these effects to gendered food packaging. When the packaging and healthiness of the food were gender schema congruent (i.e., feminine packaging for a healthy food, masculine packaging for an unhealthy food) both male and female participants rated the product as more attractive, said that they would be more likely to purchase it, and even rated it as tasting better compared to when the product was stereotype incongruent. In Study 3, packaging that explicitly appealed to gender stereotypes (“The muffin for real men”) reversed the schema congruity effect, but only among participants who scored high in psychological reactance.


2006 ◽  
Vol 134 ◽  
pp. 783-787 ◽  
Author(s):  
S. Ouellet ◽  
D. Frost ◽  
A. Bouamoul

TAPPI Journal ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 17-25
Author(s):  
JUNMING SHU ◽  
ARTHAS YANG ◽  
PEKKA SALMINEN ◽  
HENRI VAITTINEN

The Ji’an PM No. 3 is the first linerboard machine in China to use multilayer curtain coating technology. Since successful startup at the end of 2011, further development has been carried out to optimize running conditions, coating formulations, and the base paper to provide a product with satisfactory quality and lower cost to manufacture. The key challenges include designing the base board structure for the desired mechanical strength, designing the surface properties for subsequent coating operations, optimizing the high-speed running of the curtain coater to enhance production efficiency, minimizing the amount of titanium dioxide in the coating color, and balancing the coated board properties to make them suitable for both offset and flexographic printing. The pilot and mill scale results show that curtain coating has a major positive impact on brightness, while smoothness is improved mainly by the blade coating and calendering conditions. Optimization of base board properties and the blade + curtain + blade concept has resulted in the successful use of 100% recycled fiber to produce base board. The optical, mechanical, and printability properties of the final coated board meet market requirements for both offset and flexographic printing. Machine runnability is excellent at the current speed of 1000 m/min, and titanium dioxide has been eliminated in the coating formulations without affecting the coating coverage. A significant improvement in the total cost of coated white liner production has been achieved, compared to the conventional concept of using virgin fiber in the top ply. Future development will focus on combining low cost with further quality improvements to make linerboard suitable for a wider range of end-use applications, including frozen-food packaging and folding boxboard.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (01) ◽  
pp. 31-37
Author(s):  
Bryan McCulloch ◽  
John Roper ◽  
Kaitlin Rosen

Barrier coatings are used in applications including food packaging, dry goods, and consumer products to prevent transport of different compounds either through or into paper and paperboard substrates. These coatings are useful in packaging to contain active ingredients, such as fragrances, or to protect contents from detrimental substances, such as oxygen, water, grease, or other chemicals of concern. They also are used to prevent visual changes or mechanical degradation that might occur if the paper becomes saturated. The performance and underlying mechanism depends on the barrier coating type and, in particular, on whether the barrier coating is designed to prevent diffusive or capillary transport. Estimates on the basis of fundamental transport phenomena and data from a broad screening of different barrier materials can be used to understand the limits of various approaches to construct barrier coatings. These estimates also can be used to create basic design rules for general classes of barrier coatings.


Sign in / Sign up

Export Citation Format

Share Document