scholarly journals High‐Energy Nickel‐Cobalt‐Aluminium Oxide (NCA) Cells on Idle: Anode‐ versus Cathode‐Driven Side Reactions

2021 ◽  
Author(s):  
Alana Zülke ◽  
Yi Li ◽  
Peter Keil ◽  
Robert Burrell ◽  
Sacha Belaisch ◽  
...  
2021 ◽  
Author(s):  
Alana Zülke ◽  
Yi Li ◽  
Peter Keil ◽  
Robert Burrell ◽  
Sacha Belaisch ◽  
...  

Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


2019 ◽  
Vol 11 (34) ◽  
pp. 30719-30727 ◽  
Author(s):  
Selvamani Vadivel ◽  
Nutthaphon Phattharasupakun ◽  
Juthaporn Wutthiprom ◽  
Salatan duangdangchote ◽  
Montree Sawangphruk

2019 ◽  
Vol 799 ◽  
pp. 131-135
Author(s):  
Kristjan Juhani ◽  
Jakob Kübarsepp ◽  
Marek Tarraste ◽  
Jüri Pirso ◽  
Mart Viljus

Reactive sintering is a process where synthesis reaction of the ceramic phases is combined with sintering (densification) of the composite. Dense lightweight titanium oxycarbide-aluminium oxide ceramic-ceramic composites were produced from titanium dioxide, carbon black as graphite source and aluminium precursors by high energy attritor milling, followed by reactive sintering. Titanium oxycarbide and aluminium oxide phases were synthesized during reactive sintering in situ. To investigate the microstructure evolution and phase formation, the specimens were sintered at different temperatures (600-1725 °C) in vacuum. Scanning electron microscopy and X-ray diffraction were used to analyze the microstructure and phase formation. Mechanical performance (hardness and fracture toughness) was evaluated.


2019 ◽  
Vol 6 (1-2) ◽  
pp. 1-13
Author(s):  
A. Simon Justin ◽  
P. Vickraman ◽  
B. Joji Reddy

Abstract The carbon sphere (CS)@nickel cobalt sulfide core-shell nanocomposite at five different mole ratios have been synthesized by a facile low-temperature water-bath method without any thermal treatment. The XRD results on CS, NiCo2S4 and its ternary complexation confirms nanocomposite formation which matches with the cubic structure. The FTIR confirms the complexation of CS and metal-sulfide core-shell. TEM morphology shows CS at NiCo2S4 forming a core-shell which appears as interlinked bunch of grapes. The BET surface analysis observes the high surface area for the core-shell. The XPS studies confirm the elemental presence and valence states of metal composition of the core-shell. Electrochemical studies on the pure NiCo2S4 and CS@NiCo2S4 have shown that CS@NiCo2S4 in 1:1 ratio (scn2) only exhibits higher specific capacitance of 838 F g−1 at 1 A g−1 with capacity retention of 89 % for 5000 cycles than other mole ratios. Using this scn2, asymmetric supercapacitor (ASC) device fabrication has been studied. The electrochemical studies on ASC reveal high energy density of 101 Wh kg−1 with the power density of 6.3 k W kg−1, and having good cycling stability with 92 % of capacitance retention even after 3000 cycles at 20 A g−1.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2014
Author(s):  
Christopher Welch ◽  
Abdul Kaleem Mohammad ◽  
Narayan S. Hosmane ◽  
Lu Zhang ◽  
Kyu Taek Cho

The aluminum–air (or oxygen) battery has received intense attention in the past because of its excellent benefits such as low cost and high energy density, but due to the challenging issues such as hydrogen evolution and inactive oxide film formation on the Al surface, it could not be fully applied. In this study, 1-Ethyl 3-Methyl Imidazolium Chloride ([EmIm]Cl) and aluminum chloride (AlCl3) are applied to resolve the aforementioned issues. Ex situ component-level and in situ cell-level open circuit voltage (OCV) tests combined with the physics-based model analyses were conducted to investigate the electrochemical reaction behaviors of the Al–air cell. Especially, the effect of aluminum oxide formation on the anode- and cathode-side reactions were analyzed in detail. The oxide film formed at the Al surface strongly was found to significantly impede the electrochemical reaction at the surface, and the film growth was controlled by decreasing the surface tension by aggressive anions. In the cathode side, the aluminum oxide precipitated in the porous cathode electrode was found to decrease the porous reaction area and block reactant access into the reaction sites. The effects of O2 solubility in the electrolyte, initial porosity and thickness of the porous electrode are compared in detailed, and optimal thickness is suggested.


Sign in / Sign up

Export Citation Format

Share Document