scholarly journals Systems Metabolic Engineering Meets Machine Learning: A New Era for Data‐Driven Metabolic Engineering

2019 ◽  
Vol 14 (9) ◽  
pp. 1800416 ◽  
Author(s):  
Kristin V. Presnell ◽  
Hal S. Alper
2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Simon Elias Bibri

AbstractA new era is presently unfolding wherein both smart urbanism and sustainable urbanism processes and practices are becoming highly responsive to a form of data-driven urbanism under what has to be identified as data-driven smart sustainable urbanism. This flourishing field of research is profoundly interdisciplinary and transdisciplinary in nature. It operates out of the understanding that advances in knowledge necessitate pursuing multifaceted questions that can only be resolved from the vantage point of interdisciplinarity and transdisciplinarity. This implies that the research problems within the field of data-driven smart sustainable urbanism are inherently too complex and dynamic to be addressed by single disciplines. As this field is not a specific direction of research, it does not have a unitary disciplinary framework in terms of a uniform set of the academic and scientific disciplines from which the underlying theories can be drawn. These theories constitute a unified foundation for the practice of data-driven smart sustainable urbanism. Therefore, it is of significant importance to develop an interdisciplinary and transdisciplinary framework. With that in regard, this paper identifies, describes, discusses, evaluates, and thematically organizes the core academic and scientific disciplines underlying the field of data-driven smart sustainable urbanism. This work provides an important lens through which to understand the set of established and emerging disciplines that have high integration, fusion, and application potential for informing the processes and practices of data-driven smart sustainable urbanism. As such, it provides fertile insights into the core foundational principles of data-driven smart sustainable urbanism as an applied domain in terms of its scientific, technological, and computational strands. The novelty of the proposed framework lies in its original contribution to the body of foundational knowledge of an emerging field of urban planning and development.


Author(s):  
Ekaterina Kochmar ◽  
Dung Do Vu ◽  
Robert Belfer ◽  
Varun Gupta ◽  
Iulian Vlad Serban ◽  
...  

AbstractIntelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we investigate how feedback in a large-scale ITS can be automatically generated in a data-driven way, and more specifically how personalization of feedback can lead to improvements in student performance outcomes. First, in this paper we propose a machine learning approach to generate personalized feedback in an automated way, which takes individual needs of students into account, while alleviating the need of expert intervention and design of hand-crafted rules. We leverage state-of-the-art machine learning and natural language processing techniques to provide students with personalized feedback using hints and Wikipedia-based explanations. Second, we demonstrate that personalized feedback leads to improved success rates at solving exercises in practice: our personalized feedback model is used in , a large-scale dialogue-based ITS with around 20,000 students launched in 2019. We present the results of experiments with students and show that the automated, data-driven, personalized feedback leads to a significant overall improvement of 22.95% in student performance outcomes and substantial improvements in the subjective evaluation of the feedback.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1208
Author(s):  
Massimiliano Bordoni ◽  
Fabrizio Inzaghi ◽  
Valerio Vivaldi ◽  
Roberto Valentino ◽  
Marco Bittelli ◽  
...  

Soil water potential is a key factor to study water dynamics in soil and for estimating the occurrence of natural hazards, as landslides. This parameter can be measured in field or estimated through physically-based models, limited by the availability of effective input soil properties and preliminary calibrations. Data-driven models, based on machine learning techniques, could overcome these gaps. The aim of this paper is then to develop an innovative machine learning methodology to assess soil water potential trends and to implement them in models to predict shallow landslides. Monitoring data since 2012 from test-sites slopes in Oltrepò Pavese (northern Italy) were used to build the models. Within the tested techniques, Random Forest models allowed an outstanding reconstruction of measured soil water potential temporal trends. Each model is sensitive to meteorological and hydrological characteristics according to soil depths and features. Reliability of the proposed models was confirmed by correct estimation of days when shallow landslides were triggered in the study areas in December 2020, after implementing the modeled trends on a slope stability model, and by the correct choice of physically-based rainfall thresholds. These results confirm the potential application of the developed methodology to estimate hydrological scenarios that could be used for decision-making purposes.


Sign in / Sign up

Export Citation Format

Share Document