scholarly journals Area light source‐triggered latent angiogenic molecular mechanisms intensify therapeutic efficacy of adult stem cells

Author(s):  
Yu‐Jin Kim ◽  
Sung‐Won Kim ◽  
Gwang‐Bum Im ◽  
Yeong Hwan Kim ◽  
Gun‐Jae Jeong ◽  
...  
2019 ◽  
Vol 15 (6) ◽  
pp. 814-826 ◽  
Author(s):  
Sajan George ◽  
Michael R. Hamblin ◽  
Heidi Abrahamse

Abstract The promise of engineering specific cell types from stem cells and rebuilding damaged or diseased tissues has fascinated stem cell researchers and clinicians over last few decades. Mesenchymal Stem Cells (MSCs) have the potential to differentiate into non-mesodermal cells, particularly neural-lineage, consisting of neurons and glia. These multipotent adult stem cells can be used for implementing clinical trials in neural repair. Ongoing research identifies several molecular mechanisms involved in the speciation of neuroglia, which are tightly regulated and interconnected by various components of cell signalling machinery. Growing MSCs with multiple inducers in culture media will initiate changes on intricately interlinked cell signalling pathways and processes. Net result of these signal flow on cellular architecture is also dependent on the type of ligands and stem cells investigated in vitro. However, our understanding about this dynamic signalling machinery is limited and confounding, especially with spheroid structures, neurospheres and organoids. Therefore, the results for differentiating neurons and glia in vitro have been inconclusive, so far. Added to this complication, we have no convincing evidence about the electrical conductivity and functionality status generated in differentiating neurons and glia. This review has taken a step forward to tailor the information on differentiating neuroglia with the common methodologies, in practice.


2021 ◽  
Author(s):  
Yun-Ruei Kao ◽  
Jiahao Chen ◽  
Rajni Kumari ◽  
Madhuri Tatiparthy ◽  
Yuhong Ma ◽  
...  

Bone marrow resident and rarely dividing haematopoietic stem cells (HSC) harbour an extensive self-renewal capacity to sustain life-long blood formation; albeit their function declines during ageing. Various molecular mechanisms confer stem cell identity, ensure long-term maintenance and are known to be deregulated in aged stem cells. How these programs are coordinated, particularly during cell division, and what triggers their ageing-associated dysfunction has been unknown. Here, we demonstrate that HSC, containing the lowest amount of cytoplasmic chelatable iron (labile iron pool) among hematopoietic cells, activate a limited iron response during mitosis. Engagement of this iron homeostasis pathway elicits mobilization and β-oxidation of arachidonic acid and enhances stem cell-defining transcriptional programs governed by histone acetyl transferase Tip60/KAT5. We further find an age-associated expansion of the labile iron pool, along with loss of Tip60/KAT5-dependent gene regulation to contribute to the functional decline of ageing HSC, which can be mitigated by iron chelation. Together, our work reveals cytoplasmic redox active iron as a novel rheostat in adult stem cells; it demonstrates a role for the intracellular labile iron pool in coordinating a cascade of molecular events which reinforces HSC identity during cell division and to drive stem cell ageing when perturbed. As loss of iron homeostasis is commonly observed in the elderly, we anticipate these findings to trigger further studies into understanding and therapeutic mitigation of labile iron pool-dependent stem cell dysfunction in a wide range of degenerative and malignant pathologies.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Shin Fujimaki ◽  
Masanao Machida ◽  
Ryo Hidaka ◽  
Makoto Asashima ◽  
Tohru Takemasa ◽  
...  

Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological function of individual organs. Responses of stem cells to stress, injury, or environmental change are precisely regulated by intercellular and intracellular signaling networks, and these molecular events cooperatively define the ability of stem cell throughout life. Skeletal muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle contains myogenic satellite cells and muscle-derived stem cells that retain multipotent differentiation abilities. These stem cell populations have the capacity for long-term proliferation and high self-renewal. The molecular mechanisms associated with deficits in skeletal muscle and stem cell function have been extensively studied. Muscle-derived stem cells are an obvious, readily available cell resource that offers promise for cell-based therapy and various applications in the field of tissue engineering. This review describes the strategies commonly used to identify and functionally characterize adult stem cells, focusing especially on satellite cells, and discusses their potential applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Liang Luo ◽  
Da-Hai Hu ◽  
James Q. Yin ◽  
Ru-Xiang Xu

Neurological diseases can severely compromise both physical and psychological health. Recently, adult mesenchymal stem cell- (MSC-) based cell transplantation has become a potential therapeutic strategy. However, most studies related to the transdifferentiation of MSCs into neural cells have had disappointing outcomes. Better understanding of the mechanisms underlying MSC transdifferentiation is necessary to make adult stem cells more applicable to treating neurological diseases. Several studies have focused on adipose-derived stromal/stem cell (ADSC) transdifferentiation. The purpose of this review is to outline the molecular characterization of ADSCs, to describe the methods for inducing ADSC transdifferentiation, and to examine factors influencing transdifferentiation, including transcription factors, epigenetics, and signaling pathways. Exploring and understanding the mechanisms are a precondition for developing and applying novel cell therapies.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Kexin Zhang ◽  
Xudong Yang ◽  
Qi Zhao ◽  
Zugui Li ◽  
Fangmei Fu ◽  
...  

Adipogenesis is the process through which preadipocytes differentiate into adipocytes. During this process, the preadipocytes cease to proliferate, begin to accumulate lipid droplets, and develop morphologic and biochemical characteristics of mature adipocytes. Mesenchymal stem cells (MSCs) are a type of adult stem cells known for their high plasticity and capacity to generate mesodermal and nonmesodermal tissues. Many mature cell types can be generated from MSCs, including adipocyte, osteocyte, and chondrocyte. The differentiation of stem cells into multiple mature phenotypes is at the basis for tissue regeneration and repair. Cancer stem cells (CSCs) play a very important role in tumor development and have the potential to differentiate into multiple cell lineages. Accumulating evidence has shown that cancer cells can be induced to differentiate into various benign cells, such as adipocytes, fibrocytes, osteoblast, by a variety of small molecular compounds, which may provide new strategies for cancer treatment. Recent studies have reported that tumor cells undergoing epithelial-to-mesenchymal transition can be induced to differentiate into adipocytes. In this review, molecular mechanisms, signal pathways, and the roles of various biological processes in adipose differentiation are summarized. Understanding the molecular mechanism of adipogenesis and adipose differentiation of cancer cells may contribute to cancer treatments that involve inducing differentiation into benign cells.


2012 ◽  
Vol 90 (3) ◽  
pp. 337-351 ◽  
Author(s):  
Serkan Durdu ◽  
Gunseli Cubukcuoglu Deniz ◽  
Arin Dogan ◽  
Cagin Zaim ◽  
Aynur Karadag ◽  
...  

Recent increase in the interest in stem and progenitor cells may be attributed to their behavioural characteristics. A consensus has been reached that embryonic or adult stem cells have therapeutic potential. As cardiovascular health issues are still the major culprits in many developed countries, stem and progenitor cell driven approaches may give the clinicians a new arsenal to tackle many significant health issues. However, stem and progenitor cell mediated cardiovascular regeneration can be achieved via complex and dynamic molecular mechanisms involving a variety of cells, growth factors, cytokines, and genes. Functional contributions of transplanted cells on target organs and their survival are still critical problems waiting to be resolved. Moreover, the regeneration of contracting myocardial tissue has controversial results in human trials. Thus, moderately favourable clinical results should be interpreted carefully. Determining the behavioural programs, genetic and transcriptional control of stem cells, mechanisms that determine cell fate, and functional characteristics are the primary targets. In addition, ensuring the long-term follow-up of cells with efficient imaging techniques in human clinical studies may provide a resurgence of the initial enthusiasm, which has faded over time. Here, we provide a brief historical perspective on stem cell driven cardiac regeneration and discuss cardiac and vascular repair in the context of translational science.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Federica Facchin ◽  
Eva Bianconi ◽  
Silvia Canaider ◽  
Valentina Basoli ◽  
Pier Mario Biava ◽  
...  

The human body constantly regenerates after damage due to the self-renewing and differentiating properties of its resident stem cells. To recover the damaged tissues and regenerate functional organs, scientific research in the field of regenerative medicine is firmly trying to understand the molecular mechanisms through which the regenerative potential of stem cells may be unfolded into a clinical application. The finding that some organisms are capable of regenerative processes and the study of conserved evolutionary patterns in tissue regeneration may lead to the identification of natural molecules of ancestral species capable to extend their regenerative potential to human tissues. Such a possibility has also been strongly suggested as a result of the use of physical energies, such as electromagnetic fields and mechanical vibrations in human adult stem cells. Results from scientific studies on stem cell modulation confirm the possibility to afford a chemical manipulation of stem cell fate in vitro and pave the way to the use of natural molecules, as well as electromagnetic fields and mechanical vibrations to target human stem cells in their niche inside the body, enhancing human natural ability for self-healing.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Dario Siniscalco ◽  
James Jeffrey Bradstreet ◽  
Nataliia Sych ◽  
Nicola Antonucci

Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.


Sign in / Sign up

Export Citation Format

Share Document