Synthesis of Hydroxylated Biphenyls Derivatives Bearing an α,β‐Unsaturated Ketone as Lead Structure for the Development of New Drug Candidates Against Malignant Melanoma

ChemMedChem ◽  
2020 ◽  
Author(s):  
Maria Antonietta Dettori ◽  
Davide Fabbri ◽  
Marina Pisano ◽  
Carla Rozzo ◽  
Giovanna Delogu
2018 ◽  
Vol 25 (20) ◽  
pp. 2304-2328 ◽  
Author(s):  
Lishu Wang ◽  
Jungfeng Wang ◽  
Juan Liu ◽  
Yonghong Liu

Due to the importance of nature as a source of new drug candidates, the purpose of this article is to emphasize the marine natural products, which exhibit antitubercular activity, published between January 2000 and May 2016, with 138 quotations to 250 compounds obtained from marine resources. These metabolites are organized by chemical constitution and named as simple alkyl lipids derivatives, aromatics derivatives, peptides, alkaloids, terpenoids, steroids, macrolides, and polycyclic polyketides.


2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


2020 ◽  
Vol 16 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Süleyman Ediz ◽  
Murat Cancan

Background: Reckoning molecular topological indices of drug structures gives the data about the underlying topology of these drug structures. Novel anticancer drugs have been leading by researchers to produce ideal drugs. Materials and Methods: Pharmacological properties of these new drug agents explored by utilizing simulation strategies. Topological indices additionally have been utilized to research pharmacological properties of some drug structures. Novel alkylating agents based anticancer drug candidates and ve-degree molecular topological indices have been introduced recently. Results and Conclusion: In this study we calculate ve-degree atom-bond connectivity, harmonic, geometric-arithmetic and sum-connectivity molecular topological indices for the newly defined alkylating agents based dual-target anticancer drug candidates.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 1527-1539
Author(s):  
Xiaoou Ren ◽  
Anthony E. Getschman ◽  
Samuel Hwang ◽  
Brian F. Volkman ◽  
Thomas Klonisch ◽  
...  

Our skin-on-chip (SoC) model uniquely enabled quantitative studies of transendothelial and transepithelial migration of human T lymphocytes under mimicked inflammatory skin conditions and was used to test new drug candidates.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6755
Author(s):  
Maria J. Matos ◽  
Eugenio Uriarte ◽  
Lourdes Santana

3-Phenylcoumarins are a family of heterocyclic molecules that are widely used in both organic and medicinal chemistry. In this overview, research on this scaffold, since 2010, is included and discussed, focusing on aspects related to its natural origin, synthetic procedures and pharmacological applications. This review paper is based on the most relevant literature related to the role of 3-phenylcoumarins in the design of new drug candidates. The references presented in this review have been collected from multiple electronic databases, including SciFinder, Pubmed and Mendeley.


Author(s):  
Ulfert Rand ◽  
Tobias Kubsch ◽  
Bahram Kasmapour ◽  
Luka Cicin-Sain

Human Cytomegalovirus (HCMV) infection may result in severe outcomes in immunocompromised individuals such as AIDS patients, transplant recipients, and neonates. To date, no vaccines are available and there are only few drugs for anti-HCMV therapy. Adverse effects and the continuous emergence of drug-resistance strains require the identification of new drug candidates in the near future. Identification and characterization of such compounds and biological factors requires sensitive and reliable detection techniques of HCMV infection, gene expression and spread. In this work, we present and validate a novel concept for multi-reporter herpesviruses, identified through iterative testing of minimally invasive mutations. We integrated up to three fluorescence reporter genes into replication-competent HCMV strains, generating reporter HCMVs that allow the visualization of replication cycle stages of HCMV, namely the immediate early (IE), early (E), and late (L) phase. Fluorescent proteins with clearly distinguishable emission spectra were linked by 2A peptides to essential viral genes, allowing bicistronic expression of the viral and the fluorescent protein without major effects on viral fitness. By using this triple color reporter HCMV, we monitored gene expression dynamics of the IE, E, and L genes by measuring the fluorescent signal of the viral gene-associated fluorophores within infected cell populations and at high temporal resolution. We demonstrate distinct inhibitory profiles of foscarnet, fomivirsen, phosphonoacetic acid, ganciclovir, and letermovir reflecting their mode-of-action. In conclusion, our data argues that this experimental approach allows the identification and characterization of new drug candidates in a single step.


2021 ◽  
Vol 11 (6) ◽  
pp. 16-24
Author(s):  
Hemant U Chikhale

Humans are now in a bioinformatics and chemo informatics century, where we can foresee data across domains like as healthcare, the environmental, technology, and public health. The use of information sharing in silico methodologies has impacted sickness administration by predicting the absorption, distribution, metabolism, excretion, and toxicity (ADMET) patterns of synthetic compounds and efficient and environmentally succeeding pharmaceuticals upfront. The purpose of lead discovery and design is to create the appearance of novel drug candidates that can attach to a specific illness cause. The lead investigative process starts with the recognition of the lead structure, which is followed by the synthesis of its analogs and their estimation in order to produce a candidate for lead improvement. The finding of the proper lead exact is the fundamental and primary worked in the traditional lead discovery progression, and the use of computer (in silico) approaches is widely used in lead innovation. A medicinal chemist's passion for building lead structure is piqued by biomolecules, which are often made up of DNA, RNA, and proteins (such as enzymes, receptors, transporters, and ion channels). The underlying principle of such nuts and bolts is noteworthy to be acquainted with their pharmacological implication to the disease under examination. The motive of this review piece of writing is to emphasize several of the in silico methods that are used in lead discovery and to express the applications of these computational methods.


2020 ◽  
Vol 11 (12) ◽  
pp. 1354-1365
Author(s):  
Katherine A. Abrahams ◽  
Gurdyal S. Besra

Innovations in mycobacterial drug discovery to accelerate the identification of new drug candidates with confirmed targets and whole cell activity.


2014 ◽  
Vol 50 ◽  
pp. 136-137
Author(s):  
J. Ballesteros ◽  
D. Primo ◽  
P. Hernandez ◽  
A. Robles ◽  
A.B. Espinosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document