scholarly journals Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors

2010 ◽  
Vol 239 (12) ◽  
pp. 3446-3466 ◽  
Author(s):  
Karen M. Neilson ◽  
Francesca Pignoni ◽  
Bo Yan ◽  
Sally A. Moody
Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3703-3713 ◽  
Author(s):  
M. Bouchard ◽  
P. Pfeffer ◽  
M. Busslinger

Pax2 and Pax5 arose by gene duplication at the onset of vertebrate evolution and have since diverged in their developmental expression patterns. They are expressed in different organs of the mouse embryo except for their coexpression at the midbrain-hindbrain boundary (MHB), which functions as an organizing center to control midbrain and cerebellum development. During MHB development, Pax2 expression is initiated prior to Pax5 transcription, and Pax2(−/−) embryos fail to generate the posterior midbrain and cerebellum, whereas Pax5(−/−) mice exhibit only minor patterning defects in the same brain regions. To investigate whether these contrasting phenotypes are caused by differences in the temporal expression or biochemical activity of these two transcription factors, we have generated a knock-in (ki) mouse, which expresses a Pax5 minigene under the control of the Pax2 locus. Midbrain and cerebellum development was entirely rescued in Pax2(5ki/5ki) embryos. Pax5 could furthermore completely substitute for the Pax2 function during morphogenesis of the inner ear and genital tracts, despite the fact that the Pax5 transcript of the Pax2(5ki)allele was expressed only at a fivefold lower level than the wild-type Pax2 mRNA. As a consequence, the Pax2(5ki)allele was able to rescue most but not all Pax2 mutant defects in the developing eye and kidney, both of which are known to be highly sensitive to Pax2 protein dosage. Together these data demonstrate that the transcription factors Pax2 and Pax5 have maintained equivalent biochemical functions since their divergence early in vertebrate evolution.


2017 ◽  
Author(s):  
E Perea-Atienza ◽  
S.G. Sprecher ◽  
P Martínez

ABSTRACTBackgroundThe basic Helix loop helix (bHLH) family of transcription factors is one of the largest superfamilies of regulatory transcription factors and are widely used in eukaryotic organisms. They play an essential role in a range of metabolic, physiological, and developmental processes, including the development of the nervous system (NS). These transcription factors have been studied in many metazoans, especially in vertebrates but also in early branching metazoan clades such as the cnidarians and sponges. However, currently very little is known about their expression in the most basally branching bilaterian group, the xenacoelomorphs. Recently, our laboratory has characterized the full complement of bHLH in the genome of two members of the Xenacoelomorpha, the xenoturbellidXenoturbella bockiand the acoelSymsagittifera roscoffensis. Understanding the patterns of bHLH gene expression in members of this phylum (in space and time) provides critical new insights into the conserved roles of the bHLH and their putative specificities in this group. Our focus is on deciphering the specific roles that these genes have in the process of neurogenesis.ResultsHere, we analyze the developmental expression of the whole complement of bHLH genes identified in the acoelS. roscoffensis.Based on their expression patterns several members of bHLH class A appear to have specific conserved roles in neurogenesis, while other class A genes (as well as members of other classes) have likely taken on more generalized functions. All gene expression patterns are described in embryos and early juveniles.ConclusionOur results suggest that the main roles of the bHLH genes ofS. roscoffensisare evolutionarily conserved, with a specific subset dedicated to patterning the nervous system: SrAscA, SrAscB, SrHes/Hey, SrNscl, SrSrebp, SrE12/E47 and SrOlig.


1998 ◽  
Vol 201 (20) ◽  
pp. 2801-2813 ◽  
Author(s):  
A Kobiyama ◽  
Y Nihei ◽  
Y Hirayama ◽  
K Kikuchi ◽  
H Suetake ◽  
...  

cDNA clones encoding the myogenic regulatory factors (MRFs) myogenin, MyoD and myf-5 were isolated by reverse-transcription polymerase chain reaction from larvae and embryos of the common carp (Cyprinus carpio L.). Myocyte-specific enhancer factor 2 (MEF2) cDNAs were identified from a cDNA library from adult carp. Northern blot analysis showed that MyoD, myf-5 and MEF2C transcripts were present in three-somite embryos, whereas myogenin and MEF2A transcripts were not detected until the 15-somite stage. Intense signals of myogenin and MyoD transcripts were observed even in 1-month-old juveniles. Levels of MyoD, myogenin and MEF2A transcripts declined between 1 and 7 months after hatching, and myf-5 gave only a weak signal in the oldest fish. In contrast, levels of MEF2C transcripts were considerably higher in 7-month-old juveniles than in 1-month-old larvae. mRNAs encoding carp myosin heavy chain and -actin were first detected at approximately the time of the first heartbeat, and levels were maximal in juveniles 1 month post-hatching. The relatively high levels of MRF mRNA in juvenile fish probably reflect the recruitment of new muscle fibres from the satellite cell population. It was concluded that the relative importance of the different members of the MyoD and MEF2 families of transcription factors for muscle differentiation changes during ontogeny in the carp.


Author(s):  
Ruben Plöger ◽  
Christoph Viebahn

AbstractThe anterior-posterior axis is a central element of the body plan and, during amniote gastrulation, forms through several transient domains with specific morphogenetic activities. In the chick, experimentally proven activity of signalling molecules and transcription factors lead to the concept of a ‘global positioning system’ for initial axis formation whereas in the (mammotypical) rabbit embryo, a series of morphological or molecular domains are part of a putative ‘three-anchor-point model’. Because circular expression patterns of genes involved in axis formation exist in both amniote groups prior to, and during, gastrulation and may thus be suited to reconcile these models, the expression patterns of selected genes known in the chick, namely the ones coding for the transcription factors eomes and tbx6, the signalling molecule wnt3 and the wnt inhibitor pkdcc, were analysed in the rabbit embryonic disc using in situ hybridisation and placing emphasis on their germ layer location. Peripheral wnt3 and eomes expression in all layers is found initially to be complementary to central pkdcc expression in the hypoblast during early axis formation. Pkdcc then appears — together with a posterior-anterior gradient in wnt3 and eomes domains — in the epiblast posteriorly before the emerging primitive streak is marked by pkdcc and tbx6 at its anterior and posterior extremities, respectively. Conserved circular expression patterns deduced from some of this data may point to shared mechanisms in amniote axis formation while the reshaping of localised gene expression patterns is discussed as part of the ‘three-anchor-point model’ for establishing the mammalian body plan.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Baoyun Zhang ◽  
Long Chen ◽  
Guangde Feng ◽  
Wei Xiang ◽  
Ke Zhang ◽  
...  

Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b onsmad2messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development.


2010 ◽  
Vol 27 (8) ◽  
pp. 1509-1531 ◽  
Author(s):  
Zohar Ben-Moshe ◽  
Gad Vatine ◽  
Shahar Alon ◽  
Adi Tovin ◽  
Philipp Mracek ◽  
...  

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 15 ◽  
Author(s):  
He Su ◽  
Yang Chu ◽  
Junqi Bai ◽  
Lu Gong ◽  
Juan Huang ◽  
...  

Herb genomics and comparative genomics provide a global platform to explore the genetics and biology of herbs at the genome level. Panax ginseng C.A. Meyer is an important medicinal plant for a variety of bioactive chemical compounds of which the biosynthesis may involve transport of a wide range of substrates mediated by oligopeptide transporters (OPT). However, information about the OPT family in the plant kingdom is still limited. Only 17 and 18 OPT genes have been characterized for Oryza sativa and Arabidopsis thaliana, respectively. Additionally, few comprehensive studies incorporating the phylogeny, gene structure, paralogs evolution, expression profiling, and co-expression network between transcription factors and OPT genes have been reported for ginseng and other species. In the present study, we performed those analyses comprehensively with both online tools and standalone tools. As a result, we identified a total of 268 non-redundant OPT genes from 12 flowering plants of which 37 were from ginseng. These OPT genes were clustered into two distinct clades in which clade-specific motif compositions were considerably conservative. The distribution of OPT paralogs was indicative of segmental duplication and subsequent structural variation. Expression patterns based on two sources of RNA-Sequence datasets suggested that some OPT genes were expressed in both an organ-specific and tissue-specific manner and might be involved in the functional development of plants. Further co-expression analysis of OPT genes and transcription factors indicated 141 positive and 11 negative links, which shows potent regulators for OPT genes. Overall, the data obtained from our study contribute to a better understanding of the complexity of the OPT gene family in ginseng and other flowering plants. This genetic resource will help improve the interpretation on mechanisms of metabolism transportation and signal transduction during plant development for Panax ginseng.


Reproduction ◽  
2012 ◽  
Vol 144 (5) ◽  
pp. 569-582 ◽  
Author(s):  
Lisa Shaw ◽  
Sharon F Sneddon ◽  
Daniel R Brison ◽  
Susan J Kimber

Identification and characterisation of differentially regulated genes in preimplantation human embryonic development are required to improve embryo quality and pregnancy rates in IVF. In this study, we examined expression of a number of genes known to be critical for early development and compared expression profiles in individual preimplantation human embryos to establish any differences in gene expression in fresh compared to frozen–thawed embryos used routinely in IVF. We analysed expression of 19 genes by cDNA amplification followed by quantitative real-time PCR in a panel of 44 fresh and frozen–thawed human preimplantation embryos. Fresh embryos were obtained from surplus early cleavage stage embryos and frozen–thawed embryos from cryopreserved 2PN embryos. Our aim was to determine differences in gene expression between fresh and frozen–thawed human embryos, but we also identified differences in developmental expression patterns for particular genes. We show that overall gene expression among embryos of the same stage is highly variable and our results indicate that expression levels between groups did differ and differences in expression of individual genes was detected. Our results show that gene expression from frozen–thawed embryos is more consistent when compared with fresh, suggesting that cryopreserved embryos may represent a reliable source for studying the molecular events underpinning early human embryo development.


Sign in / Sign up

Export Citation Format

Share Document