Reviewing the role of plant litter inputs to forested wetland ecosystems: leafing through the literature

2020 ◽  
Vol 90 (2) ◽  
Author(s):  
Aaron B. Stoler ◽  
Rick A. Relyea
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yunmei Ping ◽  
Xu Pan ◽  
Wei Li ◽  
Jinzhi Wang ◽  
Lijuan Cui

Abstract Plant litter is an important component in wetland ecosystems, and the role of plant litter decomposition is considered to be important for wetland ecosystem functions and services. However, the consequences of litter inputs have seldom been experimentally tested in real ecosystems such as constructed wetlands (CWs). The enriched nutrients in CWs might weaken the role of litter inputs on soil carbon and nitrogen cycling. Here, we conducted a two-month field experiment to examine the effects of litter inputs on the soils in CWs. Our results showed that litter inputs significantly affected soil microbial (bacterial and fungi) diversities and properties (soil total nitrogen and nitrogen isotopes), and litter species with higher stoichiometry ratios, i.e. C/N, C/P and N/P led to higher microbial diversities. However, litter species had no or weak effects on microbial activities (CO2 and CH4 flux) or on the relative abundance of microbial communities, indicating that other environmental factors in such a CW might have stronger effects on those factors than litter inputs. These results highlighted the importance of submerged plant litter in nutrient-rich wetland ecosystems and provide potential tools for managers to improve the ecosystem functions and/or services via altering microbial diversities.


2021 ◽  
Author(s):  
◽  
Tapuwa Marapara

<p>During the last two decades there has been increasing interest in the role of forests and wetlands as flood mitigating tools due to growing concerns regarding the sustainability of many traditional engineering flood defences such as dykes, sea walls and dams. In forests, the role is facilitated by the interaction between trees, soil and water. Specifically trees reduce surface runoff and prevent flooding through increased evapotranspiration and canopy interception and enhance physical and hydraulic properties of soil that are critical for the absorption and retention of flood waters by the soil. It is increasingly realised that the answer to flood mitigation is not a blanket recommendation to “plant trees”. This is because the role of trees varies spatially and temporally as a function of climate, topography, rainfall properties, soil type and condition, catchment scale and geology, among others. For example, where trees are present in wetlands, particularly forested wetlands, the mechanisms by which trees interact with soil and water are similar to that in forests but because of a high water table, the impact of trees may be reduced. Therefore, the mere presence of forests and forested wetlands will not necessarily deliver flood risk management.  The purpose of this study was to explore the effectiveness of trees as flood mitigating tools under various bio-geo climatic factors in forests and forested wetland environments. Three forms of investigation were followed to fulfil this purpose.  A detailed literature review was carried out to assess the role of trees and forests as flood mitigation tools under changing climate, topography, species type, rainfall properties, soil type and condition, catchment scale and geology. A field experiment was carried out to collect data and analyse the effect of trees on soil physical and hydraulic properties that include bulk density, saturated hydraulic conductivity, soil organic carbon, soil moisture content, matric potential and soil moisture retention in a previously forested wetland undergoing restoration in New Zealand. A spatially explicit decision support tool, the Land Use Capability Indicator (LUCI) was then used to determine appropriate areas where intervention can be targeted to optimise the role of trees as flood mitigating tools in previously forested wetlands undergoing restoration.  The detailed review identified a major data gap in the role of trees under hydric conditions (high water table), along with uncertainties on their effectiveness in large catchments (>˜40 km²) and in extreme rainfall events. The field experiment provided the first set of soil hydrology data from an ephemeral wetland in New Zealand showing the benefits of newly established trees in improving hydraulic conductivity of soils. The soil hydrology data is a useful baseline for continuous monitoring of the forested wetlands undergoing restoration. The use of the Land Use Capability Indicator was its first application for the optimisation of flood mitigation in a forested wetland. Its suggested target areas are not necessarily conducive for survival of some tree species, although if suitable species are established, flood risk mitigation could be maximised. Further research on what native species are best for what conditions and in what combinations is recommended, to increase survival in the proposed target areas.</p>


2011 ◽  
Vol 63 (3) ◽  
pp. 763-774 ◽  
Author(s):  
Chrisoula Pirini ◽  
Vasiliki Karagiannakidou ◽  
Savvas Charitonidis

The role of aquatic vegetation in wetland ecosystems is closely related with their abundance, diversity and distribution, which in turn represents synergy of various environmental factors. The floristic composition of the aquatic vegetation in two neighboring lakes (Vegoritida and Petron) in north-central Greece was investigated by means of 160 relev?s, which were recorded using the Braun-Blanquet method. The analysis of relev?s based on TWINSPAN clustering showed the existence of 10 plant communities from the Lemnetea, Potametea, Phragmito-Magnocaricetea and Juncetea maritimi classes. The most important environmental factors for the vegetation differentiation in the study area, according to the ordination diagram, are light intensity and water depth of the habitats. The plant species diversity was quantified with species richness, Shannon Diversity and evenness indices at a scale of each relev?, with a sampling size of 20 m2. There was a clear differentiation between the relev?s at the more eutrophic Petron Lake and those at Vegoritida Lake. The mean plot diversity was also calculated for each plant community, to enable comparison of the diversity indices among the communities at the plot level.


2021 ◽  
Vol 7 (11) ◽  
pp. 968
Author(s):  
Hossein Masigol ◽  
Jason Nicholas Woodhouse ◽  
Pieter van West ◽  
Reza Mostowfizadeh-Ghalamfarsa ◽  
Keilor Rojas-Jimenez ◽  
...  

The contribution of fungi to the degradation of plant litter and transformation of dissolved organic matter (humic substances, in particular) in freshwater ecosystems has received increasing attention recently. However, the role of Saprolegniales as one of the most common eukaryotic organisms is rarely studied. In this study, we isolated and phylogenetically placed 51 fungal and 62 Saprolegniales strains from 12 German lakes. We studied the cellulo-, lignino-, and chitinolytic activity of the strains using plate assays. Furthermore, we determined the capacity of 10 selected strains to utilize 95 different labile compounds, using Biolog FF MicroPlates™. Finally, the ability of three selected strains to utilize maltose and degrade/produce humic substances was measured. Cladosporium and Penicillium were amongst the most prevalent fungal strains, while Saprolegnia, Achlya, and Leptolegnia were the most frequent Saprolegniales strains. Although the isolated strains assigned to genera were phylogenetically similar, their enzymatic activity and physiological profiling were quite diverse. Our results indicate that Saprolegniales, in contrast to fungi, lack ligninolytic activity and are not involved in the production/transformation of humic substances. We hypothesize that Saprolegniales and fungi might have complementary roles in interacting with dissolved organic matter, which has ecological implications for carbon cycling in freshwater ecosystems.


2012 ◽  
Vol 9 (8) ◽  
pp. 2821-2830 ◽  
Author(s):  
A. A. Bloom ◽  
P. I. Palmer ◽  
A. Fraser ◽  
D. S. Reay

Abstract. We develop a dynamic methanogen-available carbon model (DMCM) to quantify the role of the methanogen-available carbon pool in determining the spatial and temporal variability of tropical wetland CH4 emissions over seasonal timescales. We fit DMCM parameters to satellite observations of CH4 columns from SCIAMACHY CH4 and equivalent water height (EWH) from GRACE. Over the Amazon River basin we found substantial seasonal variability of this carbon pool (coefficient of variation = 28 ± 22%) and a rapid decay constant (φ = 0.017 day−1), in agreement with available laboratory measurements, suggesting that plant litter is likely the prominent methanogen carbon source over this region. Using the DMCM we derived global CH4 emissions for 2003–2009, and determined the resulting seasonal variability of atmospheric CH4 on a global scale using the GEOS-Chem atmospheric chemistry and transport model. First, we estimated that tropical emissions amounted to 111.1 Tg CH4 yr−1, of which 24% was emitted from Amazon wetlands. We estimated that annual tropical wetland emissions increased by 3.4 Tg CH4 yr−1 between 2003 and 2009. Second, we found that the model was able to reproduce the observed seasonal lag of CH4 concentrations peaking 1–3 months before peak EWH values. We also found that our estimates of CH4 emissions substantially improved the comparison between the model and observed CH4 surface concentrations (r = 0.9). We anticipate that these new insights from the DMCM represent a fundamental step in parameterising tropical wetland CH4 emissions and quantifying the seasonal variability and future trends of tropical CH4 emissions.


2000 ◽  
Vol 10 (4) ◽  
pp. 471-487 ◽  
Author(s):  
J.M. Dinsdale ◽  
M.P. Dale ◽  
M. Kent

AbstractIn Britain,Lobelia urens(L.) (the heath lobelia) occurs in rough grassland, is rare and only found in southern England, where it is at the northern limit of its range. Emergence and survival ofL. urenswas investigated at six locations in two geographically distinct sites experiencing spring, autumn or no grazing in two consecutive years. Four factors were evaluated qualitatively, as a means of characterizing microhabitats for germination and survival: all permutations of higher plant cover, bryophytes, plant litter and surface depressions. The potential effect of adjacent plants on recruitment was also assessed using the nearest neighbour distance (NND). Grazing created depressions, removed plant litter and increased the proportion of sites with higher plant cover. It also resulted in a more open sward with higher NNDs. None of these changes stimulated recruitment. Instead, small increases in the frequency of some rare or very rare microhabitat types were vital in making grazed rough grassland more suitable for emergence. Reduced litter loads and a greater quantity of moss were two key responses. Overall, survival ofL. urenswas less than 1% and was particularly favoured by moss and an increase in NNDs. Shading from higher plants, with or without plant litter, decreased emergence, but the precise role of litter was complex and most probably related to its quantity. In an experimental seed bed, only empty depressions favoured emergence. The microhabitat relationships ofL. urenswere unusually consistent among locations and consecutive years.L. urensrequires high soil surface temperatures but also adequate water for large scale recruitment, and such conditions are encouraged by grazing. The particular problems of experimental design and statistical analysis of data from recruitment experiments are also discussed.


2017 ◽  
Vol 68 (12) ◽  
pp. 2289 ◽  
Author(s):  
Rebecca V. Gladstone-Gallagher ◽  
Dean R. Sandwell ◽  
Andrew M. Lohrer ◽  
Carolyn J. Lundquist ◽  
Conrad A. Pilditch

Empirical measurements of estuary-to-coast material fluxes usually exclude the fraction of primary production that is exported as macrodetritus (marine plant litter), potentially leaving a gap in our understanding of the role of estuaries as outwelling systems. To address this gap, we sampled water and suspended material seasonally from the mouth of Pepe Inlet, Tairua Estuary, New Zealand. From samples collected hourly over 24h, we calculated the lateral tidal fluxes (import, export, net flux) of macrodetritus, particulate and dissolved forms of nitrogen (N) and phosphorus (P). Annually, the inlet was a net exporter of N and P (5145 and 362kg respectively). However, macrodetritus accounted for <13 and <3% of seasonal N and P exports respectively. Macrodetritus is an obvious and visible source of estuary-to-coast subsidy, but our derived nutrient budgets suggest the dissolved and particulate forms dominate the net export of N and P (>87%). Nevertheless, seasonal pulses in the source and supply of macrodetritus may have consequences for the temporal scales over which this resource subsidy affects receiving ecosystems (e.g. intertidal sandflats). These mensurative investigations are useful to inform estuarine nutrient budgets that quantify the ecosystem services provided by temperate estuaries (e.g. contribution to fisheries food webs).


2011 ◽  
Vol 34 (4) ◽  
pp. 333-345 ◽  
Author(s):  
Eliska Rejmankova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document