scholarly journals Contrasting roles for IL-10 in protective immunity to different life cycle stages of intestinal nematode parasites

2003 ◽  
Vol 33 (9) ◽  
pp. 2382-2390 ◽  
Author(s):  
Helena Helmby ◽  
Richard K. Grencis
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Philip L. Felgner ◽  
Meta Roestenberg ◽  
Li Liang ◽  
Christopher Hung ◽  
Aarti Jain ◽  
...  

Abstract Complete sterile protection to Plasmodium falciparum (Pf) infection mediated by pre-erythrocytic immunity can be experimentally induced under chloroquine prophylaxis, through immunization with sporozoites from infected mosquitoes' bites (CPS protocol). To characterize the profile of CPS induced antibody (Ab) responses, we developed a proteome microarray containing 809 Pf antigens showing a distinct Ab profile with recognition of antigens expressed in pre-erythrocytic life-cycle stages. In contrast, plasma from naturally exposed semi-immune individuals from Kenya was skewed toward antibody reactivity against asexual blood stage antigens. CPS-immunized and semi-immune individuals generated antibodies against 192 and 202 Pf antigens, respectively, but only 60 antigens overlapped between the two groups. Although the number of reactive antigens varied between the CPS-immunized individuals, all volunteers reacted strongly against the pre-erythrocytic antigens circumsporozoite protein (CSP) and liver stage antigen 1 (LSA1). Well classified merozoite and erythrocytic antigens were strongly reactive in semi-immune individuals but lacking in the CPS immunized group. These data show that the antibody profile of CPS-immunized and semi-immune groups have quite distinct profiles reflecting their protective immunity; antibodies from CPS immunized individuals react strongly against pre-erythrocytic while semi-immune individuals mainly react against erythrocytic antigens.


Parasitology ◽  
1976 ◽  
Vol 73 (1) ◽  
pp. 25-37 ◽  
Author(s):  
M. Elaine Rose ◽  
Patricia Hesketh

SummaryAn attempt was made to determine the relative importance of the different life-cycle stages ofEimeria maximain the induction of immunity and also those stages most affected by the immune response of the host. In one experiment the life-cycle was controlled by chemotherapy but in all other experiments partial life-cycles were induced by transfers of infected mucosa between hosts.The results indicated that the second generation schizont stage is probably that most concerned in the induction of protective immunity and that sexual stages are most susceptible to immune inhibition. After initial inhibition in the immune host the earlier asexual stages were able to resume development when transferred to a susceptible host. The longer the period of exposure to the immune environment, the less able was the parasite to recover.


Parasitology ◽  
2004 ◽  
Vol 128 (1) ◽  
pp. 91-98 ◽  
Author(s):  
G. STEPEK ◽  
K. M. HOUSTON ◽  
H. S. GOODRIDGE ◽  
E. DEVANEY ◽  
W. HARNETT

Previous studies have shown that the secreted phosphorylcholine-containing glycoprotein of filarial nematodes, ES-62, is only present in the post-infective life-cycle stages, but that the mRNA is transcribed throughout the worm's life-cycle. The aim of this current study was to investigate whether the presence or absence of protein expression simply reflects differences in mRNA abundance. To this end, we investigated the relative abundance of ES-62 using TaqMan real time RT-PCR, in different life-cycle stages of 2 model filarial nematode parasites,Acanthocheilonema viteaeandBrugia pahangi. ForB. pahangi, microfilariae, infective larvae and adult worms were each found to have approximately similar levels of ES-62 mRNA. However, the corresponding stages ofA. viteaediffered greatly from each other with a pattern of increased mRNA production with maturation. As a ruleA. viteaehad higher levels of ES-62 mRNA thanB. pahangi, and this was particularly noticeable in the adult stage where the difference was approximately 3500-fold higher. However, this significant difference in mRNA abundance was not reflected in the quantity of ES-62 protein secreted by the adult worms of each species, asA. viteaeonly secreted ~3 times as much ES-62 asB. pahangi. Thus, overall, the results obtained from this study indicate that ES-62 protein production does not solely reflect mRNA levels, and also suggest that the 2 nematodes may employ different mechanisms for regulating protein production.


2019 ◽  
Vol 0 (3) ◽  
pp. 53-60 ◽  
Author(s):  
T.Yu. Altufyeva ◽  
◽  
P.A. Ivanov ◽  
G.R. Sakhapova ◽  
◽  
...  

2009 ◽  
Vol 66 (1) ◽  
Author(s):  
Susana Gómez-González ◽  
Lohengrin A Cavieres ◽  
Patricio Torres ◽  
Cristian Torres-Díaz

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 638
Author(s):  
Monika Mazur ◽  
Daria Wojciechowska ◽  
Ewa Sitkiewicz ◽  
Agata Malinowska ◽  
Bianka Świderska ◽  
...  

The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


Sign in / Sign up

Export Citation Format

Share Document