Genome‐wide identification of age‐related CpG sites for age estimation from blood DNA of Han Chinese individuals

2021 ◽  
Author(s):  
Chao Xiao ◽  
Shaohua Yi ◽  
Daixin Huang
BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rick J. Jansen ◽  
Lin Tong ◽  
Maria Argos ◽  
Farzana Jasmine ◽  
Muhammad Rakibuz-Zaman ◽  
...  

Abstract Background It is well-known that methylation changes occur as humans age, however, understanding how age-related changes in DNA methylation vary by sex is lacking. In this study, we characterize the effect of age on DNA methylation in a sex-specific manner and determine if these effects vary by genomic context. We used the Illumina HumanMethylation 450 K array and DNA derived from whole blood for 400 adult participants (189 males and 211 females) from Bangladesh to identify age-associated CpG sites and regions and characterize the location of these age-associated sites with respect to CpG islands (vs. shore, shelf, or open sea) and gene regions (vs. intergenic). We conducted a genome-wide search for age-associated CpG sites (among 423,604 sites) using a reference-free approach to adjust for cell type composition (the R package RefFreeEWAS) and performed an independent replication analysis of age-associated CpGs. Results The number of age-associated CpGs (p < 5 x 10− 8) were 986 among men and 3479 among women of which 2027(63.8%) and 572 (64.1%) replicated (using Bonferroni adjusted p < 1.2 × 10− 5). For both sexes, age-associated CpG sites were more likely to be hyper-methylated with increasing age (compared to hypo-methylated) and were enriched in CpG islands and promoter regions compared with other locations and all CpGs on the array. Although we observed strong correlation between chronological age and previously-developed epigenetic age models (r ≈ 0.8), among our top (based on lowest p-value) age-associated CpG sites only 12 for males and 44 for females are included in these prediction models, and the median chronological age compared to predicted age was 44 vs. 51.7 in males and 45 vs. 52.1 in females. Conclusions Our results describe genome-wide features of age-related changes in DNA methylation. The observed associations between age and methylation were generally consistent for both sexes, although the associations tended to be stronger among women. Our population may have unique age-related methylation changes that are not captured in the established methylation-based age prediction model we used, which was developed to be non-tissue-specific.


2016 ◽  
Author(s):  
Shyamalika Gopalan ◽  
Oana Carja ◽  
Maud Fagny ◽  
Etienne Patin ◽  
Justin W. Myrick ◽  
...  

AbstractAging is associated with widespread changes in genome-wide patterns of DNA methylation. Thousands of CpG sites whose tissue-specific methylation levels are strongly correlated with chronological age have been previously identified. However, the majority of these studies have focused primarily on cosmopolitan populations living in the developed world; it is not known if age-related patterns of DNA methylation at these loci are similar across a broad range of human genetic and ecological diversity. We investigated genome-wide methylation patterns using saliva and whole blood derived DNA from two traditionally hunting and gathering African populations: the Baka of the western Central African rainforest and the ≠Khomani San of the South African Kalahari Desert. We identify hundreds of CpG sites whose methylation levels are significantly associated with age, thousands that are significant in a meta-analysis, and replicate trends previously reported in populations of non-African descent. We confirm that an age-associated site in the gene ELOVL2 shows a remarkably congruent relationship with aging in humans, despite extensive genetic and environmental variation across populations. We also demonstrate that genotype state at methylation quantitative trait loci (meQTLs) can affect methylation trends at some known age-associated CpG sites. Our study explores the relationship between CpG methylation and chronological age in populations of African hunter-gatherers, who rely on different diets across diverse ecologies. While many age-related CpG sites replicate across populations, we show that considering common genetic variation at meQTLs further improves our ability to detect previously identified age associations.


2020 ◽  
Vol 37 (9) ◽  
pp. 2691-2698 ◽  
Author(s):  
Xiaoming Liu

Abstract The prehistoric demography of human populations is an essential piece of information for illustrating our evolution. Despite its importance and the advancement of ancient DNA studies, our knowledge of human evolution is still limited, which is also the case for relatively recent population dynamics during and around the Holocene. Here, we inferred detailed demographic histories from 1 to 40 ka for 24 population samples using an improved model-flexible method with 36 million genome-wide noncoding CpG sites. Our results showed many population growth events that were likely due to the Neolithic Revolution (i.e., the shift from hunting and gathering to agriculture and settlement). Our results help to provide a clearer picture of human prehistoric demography, confirming the significant impact of agriculture on population expansion, and provide new hypotheses and directions for future research.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine R. Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 870
Author(s):  
Jiansheng Zhang ◽  
Hongli Fu ◽  
Yan Xu

In recent years, scientists have found a close correlation between DNA methylation and aging in epigenetics. With the in-depth research in the field of DNA methylation, researchers have established a quantitative statistical relationship to predict the individual ages. This work used human blood tissue samples to study the association between age and DNA methylation. We built two predictors based on healthy and disease data, respectively. For the health data, we retrieved a total of 1191 samples from four previous reports. By calculating the Pearson correlation coefficient between age and DNA methylation values, 111 age-related CpG sites were selected. Gradient boosting regression was utilized to build the predictive model and obtained the R2 value of 0.86 and MAD of 3.90 years on testing dataset, which were better than other four regression methods as well as Horvath’s results. For the disease data, 354 rheumatoid arthritis samples were retrieved from a previous study. Then, 45 CpG sites were selected to build the predictor and the corresponded MAD and R2 were 3.11 years and 0.89 on the testing dataset respectively, which showed the robustness of our predictor. Our results were better than the ones from other four regression methods. Finally, we also analyzed the twenty-four common CpG sites in both healthy and disease datasets which illustrated the functional relevance of the selected CpG sites.


Sign in / Sign up

Export Citation Format

Share Document