Kinetic evaluation method for SPME-NIR measurements of analytes with long equilibration time

2001 ◽  
Vol 5 (3) ◽  
pp. 131-142 ◽  
Author(s):  
J. Bürck ◽  
M. Schlagenhof ◽  
S. Roth ◽  
H. Mathieu
1986 ◽  
Vol 12 (1) ◽  
pp. 57-62
Author(s):  
Yuukei Takasaki ◽  
Kazunari Komatsu ◽  
Norio Tachikawa

2009 ◽  
Vol 79-82 ◽  
pp. 251-254
Author(s):  
Li Zhang ◽  
Li Hua Dong

An thin reagent containing optochemical film sensor for detecting and measuring free chlorine in water is described. The film sensor has been manufactured by immobilisation indicator of 3,5-dimethyl-4-hydroxybenzaldazine in a permeable transparent polymeric membrane. A linear calibration for free available chlorine can be obtained in the range between 0.05 and 3ppm. The limit of quantitation is 0.3 ppm, and the accuracy exceeds 7%. It takes about 150s to measure the relatively low occupational exposure concentration of 0.1ppm. The interference of combined chlorine has been studied. The sensor has no response to combined chlorine. And the stability of the sensors and the effect of external parameters like relative humidity (RH), temperature on the sensor response have been investigated. The sensor response is affected by varying the temperature; however, humidity in the range between 0 and 90% RH does not affect sensor response. The 3,5-dimethyl-4-hydroxybenzaldazine remained stable inside the polymeric film and no chemical reaction, crystallization or leaching occurred during 6 months of observation. Proper choice of indicator dye and polymeric material and successful application of kinetic evaluation method for the exposure experiments determine the desired features of the sensor. Introduction


1991 ◽  
Vol 175 (2) ◽  
pp. 299-303 ◽  
Author(s):  
J.M. Criado ◽  
J. Málek ◽  
J. Šesták

2014 ◽  
Vol 50 (1) ◽  
pp. 77-81 ◽  
Author(s):  
J. Sesták ◽  
P. Holba ◽  
Z. Zivkovic

The famous Kissinger's kinetic evaluation method (Anal. Chem. 1957) is examined with respect to the feasible impact of the individual quantities and assumptions involved, namely the model of reaction mechanism, f(a) (with the iso- and nonisothermal degrees of conversion, ? and ?) the rate constant, k(T) (and associated activation energy, E), heating/cooling rate, b (supplementing additional thermodynamic term for the melt undercooling, ?T) and above all, the association of the characteristic temperature, Tm, with the DTA peak apex. It is shown that the Kissinger/s equation, in contrary to the results of Vold (Anal. Chem. 1949), is omitting the term of heat inertia arising from the true balance of heat fluxes. The absence of this term skews the evaluated values of activation energies.


Author(s):  
T. Oikawa ◽  
H. Kosugi ◽  
F. Hosokawa ◽  
D. Shindo ◽  
M. Kersker

Evaluation of the resolution of the Imaging Plate (IP) has been attempted by some methods. An evaluation method for IP resolution, which is not influenced by hard X-rays at higher accelerating voltages, was proposed previously by the present authors. This method, however, requires truoblesome experimental preperations partly because specially synthesized hematite was used as a specimen, and partly because a special shape of the specimen was used as a standard image. In this paper, a convenient evaluation method which is not infuenced by the specimen shape and image direction, is newly proposed. In this method, phase contrast images of thin amorphous film are used.Several diffraction rings are obtained by the Fourier transformation of a phase contrast image of thin amorphous film, taken at a large under focus. The rings show the spatial-frequency spectrum corresponding to the phase contrast transfer function (PCTF). The envelope function is obtained by connecting the peak intensities of the rings. The evelope function is offten used for evaluation of the instrument, because the function shows the performance of the electron microscope (EM).


2002 ◽  
Vol 7 (2) ◽  
pp. 1-4, 12 ◽  
Author(s):  
Christopher R. Brigham

Abstract To account for the effects of multiple impairments, evaluating physicians must provide a summary value that combines multiple impairments so the whole person impairment is equal to or less than the sum of all the individual impairment values. A common error is to add values that should be combined and typically results in an inflated rating. The Combined Values Chart in the AMA Guides to the Evaluation of Permanent Impairment, Fifth Edition, includes instructions that guide physicians about combining impairment ratings. For example, impairment values within a region generally are combined and converted to a whole person permanent impairment before combination with the results from other regions (exceptions include certain impairments of the spine and extremities). When they combine three or more values, physicians should select and combine the two lowest values; this value is combined with the third value to yield the total value. Upper extremity impairment ratings are combined based on the principle that a second and each succeeding impairment applies not to the whole unit (eg, whole finger) but only to the part that remains (eg, proximal phalanx). Physicians who combine lower extremity impairments usually use only one evaluation method, but, if more than one method is used, the physician should use the Combined Values Chart.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1365-1372
Author(s):  
Xiaohui Mao ◽  
Liping Fei ◽  
Xianping Shang ◽  
Jie Chen ◽  
Zhihao Zhao

The measurement performance of road vehicle automatic weighing instrument installed on highways is directly related to the safety of roads and bridges. The fuzzy number indicates that the uncertain quantization problem has obvious advantages. By analyzing the factors affecting the metrological performance of the road vehicle automatic weighing instrument, combined with the fuzzy mathematics theory, the weight evaluation model of the dynamic performance evaluation of the road vehicle automatic weighing instrument is proposed. The factors of measurement performance are summarized and calculated, and the comprehensive evaluation standard of the metering performance of the weighing equipment is obtained, so as to realize the quantifiable analysis and evaluation of the metering performance of the dynamic road vehicle automatic weighing instrument in use, and provide data reference for adopting a more scientific measurement supervision method.


Sign in / Sign up

Export Citation Format

Share Document