Comprehensive analyses of microRNA and mRNA expression in colorectal serrated lesions and colorectal cancer with a MSI phenotype

Author(s):  
Tamotsu Sugai ◽  
Mitsumasa Osakabe ◽  
Takeshi Niinuma ◽  
Makoto Eizuka ◽  
Yoshihito Tanaka ◽  
...  
Gut ◽  
2015 ◽  
Vol 64 (6) ◽  
pp. 991-1000 ◽  
Author(s):  
James E East ◽  
Michael Vieth ◽  
Douglas K Rex

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 453
Author(s):  
Yu-Han Wang ◽  
Shih-Ching Chang ◽  
Muhamad Ansar ◽  
Chin-Sheng Hung ◽  
Ruo-Kai Lin

Colorectal cancer (CRC) arises from chromosomal instability, resulting from aberrant hypermethylation in tumor suppressor genes. This study identified hypermethylated genes in CRC and investigated how they affect clinical outcomes. Methylation levels of specific genes were analyzed from The Cancer Genome Atlas dataset and 20 breast cancer, 16 esophageal cancer, 33 lung cancer, 15 uterine cancer, 504 CRC, and 9 colon polyp tissues and 102 CRC plasma samples from a Taiwanese cohort. In the Asian cohort, Eps15 homology domain-containing protein 3 (EHD3) had twofold higher methylation in 44.4% of patients with colonic polyps, 37.3% of plasma from CRC patients, and 72.6% of CRC tissues, which was connected to vascular invasion and high microsatellite instability. Furthermore, EHD3 hypermethylation was detected in other gastrointestinal cancers. In the Asian CRC cohort, low EHD3 mRNA expression was found in 45.1% of patients and was connected to lymph node metastasis. Multivariate Cox proportional-hazards survival analysis revealed that hypermethylation in women and low mRNA expression were associated with overall survival. In the Western CRC cohort, EHD3 hypermethylation was also connected to overall survival and lower chemotherapy and antimetabolite response rates. In conclusion, EHD3 hypermethylation contributes to the development of CRC in both Asian and Western populations.


2021 ◽  
Author(s):  
Feifei Liu ◽  
Yu Wang ◽  
Wenxue Li ◽  
Diancheng Li ◽  
Yuwei Xin ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies of the digestive system; the progression and prognosis of which are affected by a complicated network of genes and pathways. The aim of this study was to identify potential hub genes associated with the progression and prognosis of colorectal cancer (CRC).Methods: We obtained gene expression profiles from GEO database to search differentially expressed genes (DEGs) between CRC tissues and normal tissue. Subsequently, we conducted a functional enrichment analysis, generated a protein–protein interaction (PPI) network to identify the hub genes, and analyzed the expression validation of the hub genes. Kaplan–Meier plotter survival analysis tool was performed to evaluate the prognostic value of hub genes expression in CRC patients.Results: A total of 370 samples, involving CRC and normal tissues were enrolled in this article. 283 differentially expressed genes (DEGs), including 62 upregulated genes and 221 downregulated genes between CRC and normal tissues were selected. We finally filtered out 6 hub genes, including INSL5, MTIM, GCG, SPP1, HSD11B2, and MAOB. In the database of TCGA-COAD, the mRNA expression of INSL5, MT1M, HSD11B2, MAOB in tumor is lower than that in normal; the mRNA expression of SPP1 in tumor is higher than that in normal. In the HPA database, the expression of INSL5, GCG, HSD11B2, MAOB in tumor is lower than that in normal tissues; the expression of SPP1 in the tumor is higher than that in normal tissues. Survival analysis revealed that INSL5, GCG, SPP1 and MT1M may serve as prognostic biomarkers in CRC. Conclusions: We screened out six hub genes to predict the occurrence and prognosis of patients with CRC using bioinformatics methods, which may provide new targets and ideas for diagnosis, prognosis and individualized treatment for CRC.


2021 ◽  
Vol 12 (03) ◽  
pp. 175-176
Author(s):  
Vincent Zimmer ◽  
Bert Bier

AbstractOptical diagnosis during colorectal cancer screening is instrumental in deciding whether or not to resect colorectal lesions, choose the appropriate technique and to properly communicate with the pathologist. The latter is even more important when it comes to serrated lesions with the latest WHO classification justifying a pathology diagnosis of a serrated lesion with a minimum criterion of characteristic findings in just one crypt, which may only be detectable when adequate sectioning and scrutinization is performed. Here, we present a unique case of comparatively small rectal lesions with typical endoscopic findings warranting a diagnosis of a serrated lesion (open pit pattern) and adenoma (valley sign).


Gut ◽  
2021 ◽  
pp. gutjnl-2021-324301
Author(s):  
Dan Li ◽  
Amanda R Doherty ◽  
Menaka Raju ◽  
Liyan Liu ◽  
Nan Ye Lei ◽  
...  

ObjectiveThe longitudinal risk of colorectal cancer (CRC) associated with subtypes of serrated polyps (SPs) remains incompletely understood.DesignThis community-based, case–control study included 317 178 Kaiser Permanente Northern California members who underwent their first colonoscopy during 2006–2016. Nested within this population, we identified 695 cases of CRC and 3475 CRC-free controls (matched 5:1 to cases for age, sex and year of colonoscopy). Two expert pathologists reviewed the tissue slides of all SPs identified on the first colonoscopy and reclassified them to sessile serrated lesions (SSLs), hyperplastic polyps (HPs) and traditional serrated adenomas. SPs with borderline characteristics of SSLs but insufficient to make a definitive diagnosis were categorised as unspecified SPs. The association with development of CRC was assessed using multivariable logistic regression.ResultsCompared with individuals with no polyp, the adjusted ORs (aORs) for SSL alone or with synchronous adenoma were 2.9 (95% CI: 1.8 to 4.8) and 4.4 (95% CI: 2.7 to 7.2), respectively. The aORs for SSL with dysplasia, large proximal SSL,and small proximal SSL were 10.3 (95% CI: 2.1 to 50.3), 12.8 (95% CI: 3.5 to 46.9) and 1.9 (95% CI: 0.8 to 4.7), respectively. Proximal unspecified SP also conferred an increased risk (aOR: 5.8, 95% CI: 2.2 to 15.2). Women with SSL were associated with higher risk (aOR: 4.4; 95% CI: 2.3 to 8.2) than men (aOR: 1.7; 95% CI: 0.8 to 3.8).ConclusionIncreased risk of CRC was observed in individuals with SSLs, particularly large proximal ones or with dysplasia, supporting close endoscopic surveillance. Proximal unspecified SPs were also associated with increased risk of CRC and should be managed as SSLs.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 273 ◽  
Author(s):  
Stephanie Holst ◽  
Jennifer Wilding ◽  
Kamila Koprowska ◽  
Yoann Rombouts ◽  
Manfred Wuhrer

The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.


Sign in / Sign up

Export Citation Format

Share Document