scholarly journals Als3‐Th‐cell‐epitopes plus the novel combined adjuvants of CpG, MDP, and FIA synergistically enhanced the immune response of recombinant TRAP derived from Staphylococcus aureus in mice

Author(s):  
Jinzhu Ma ◽  
Wei Liu ◽  
Beiyan Wang ◽  
Simiao Yu ◽  
Liquan Yu ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Zhang ◽  
You Zhai ◽  
Guanzhang Li ◽  
Tao Jiang

Abstract Background Glioma is the most common and fatal type of nerve neoplasm in the central nervous system. Several biomarkers have been considered for prognosis prediction, which is not accurate enough. We aimed to carry out a gene signature related to the expression of immune checkpoints which was enough for its performance in prediction. Methods Gene expression of immune checkpoints in TGGA database was filtrated. The 5 selected genes underwent verification by COX and Lasso-COX regression. Next, the selected genes were included to build a novel signature for further analysis. Results Patients were sub-grouped into high and low risk according to the novel signature. Immune response, clinicopathologic characters, and survival showed significant differences between those 2 groups. Terms including “naive,” “effector,” and “IL-4” were screened out by GSEA. The results showed strong relevance between the signature and immune response. Conclusions We constructed a gene signature with 5 immune checkpoints. The signature predicted survival effectively. The novel signature performed more functional than previous biomarkers.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 110
Author(s):  
Anna K. Riebisch ◽  
Sabrina Mühlen ◽  
Yan Yan Beer ◽  
Ingo Schmitz

Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.


2010 ◽  
Vol 17 (12) ◽  
pp. 1868-1874 ◽  
Author(s):  
Clayton Harro ◽  
Robert Betts ◽  
Walter Orenstein ◽  
Eun-Jeong Kwak ◽  
Howard E. Greenberg ◽  
...  

ABSTRACT Merck V710 is a novel vaccine containing the conserved Staphylococcus aureus iron surface determinant B shown to be protective in animal models. A phase I, multicenter, double-blind study of the dose range was conducted to assess the immunogenicity and safety of an adjuvanted liquid formulation of V710. A total of 124 adults (18 to 55 years of age) were randomized 1:1:1:1 to receive one 0.5-ml intramuscular injection of V710 (5 μg, 30 μg, or 90 μg) or saline placebo. A positive immune response was defined as at least a 2-fold increase in IsdB-specific IgG levels from baseline levels. Local and systemic adverse events were assessed for 5 and 14 days, respectively, following vaccination. Positive immune responses were detected in 12 (67%) of the 18 subjects in the groups receiving 30 and 90 μg V710 tested at day 10. At day 14, a significantly greater proportion of subjects manifested a positive immune response with higher geometric mean concentrations in the V710 30-μg (86%; geometric mean concentration of 116 μg/ml) and 90-μg (87%; geometric mean concentration of 131 μg/ml) dose groups than in the V710 5-μg (29%; geometric mean concentration of 51 μg/ml) or placebo (4%; geometric mean concentration of 23 μg/ml) groups. Immune responses were durable through day 84. Subjects <40 and ≥40 years of age had comparable immune responses. The most common adverse events were injection-site pain, nausea, fatigue, and headache, usually of mild intensity. No immediate reactions or serious adverse events were reported. In this first study of V710 in humans, a single 30-μg or 90-μg dose was more immunogenic than the 5-μg dose or placebo. Immune responses were evident by 10 to 14 days after vaccination in most responders.


Author(s):  
Henrique A. L. Ribeiro ◽  
Tatiani U. Maioli ◽  
Leandro M. de Freitas ◽  
Paolo Tieri ◽  
Filippo Castiglione

2013 ◽  
Vol 81 (6) ◽  
pp. 2070-2075 ◽  
Author(s):  
Nathan K. Archer ◽  
Janette M. Harro ◽  
Mark E. Shirtliff

ABSTRACTThe anterior nares of humans are the major reservoir forStaphylococcus aureuscolonization. Approximately 20% of the healthy human population is persistently and 80% is intermittently colonized withS. aureusin the nasal cavity. Previous studies have shown a strong causal connection betweenS. aureusnasal carriage and increased risk of nosocomial infection, as well as increased carriage due to immune dysfunction. However, the immune responses that permit persistence or mediate clearance ofS. aureuson the nasal mucosa are fundamentally undefined. In this study, we developed a carriage model in C57BL/6J mice and showed that clearance begins 14 days postinoculation. In contrast, SCID mice that have a deficient adaptive immune response are unable to eliminateS. aureuseven after 28 days postinoculation. Furthermore, decolonization was found to be T cell mediated but B cell independent by evaluating carriage clearance in T-cell receptor β/δ (TCR-β/δ) knockout (KO) and IgH-μ KO mice, respectively. Upregulation of the cytokines interleukin 1β (IL-1β), KC (also termed CXC ligand 1 [CXCL1]), and IL-17A occurred following inoculation with intranasalS. aureus. IL-17A production was crucial for clearance, since IL-17A-deficient mice were unable to effectively eliminateS. aureuscarriage. Subsequently, cell differential counts were evaluated from nasal lavage fluid obtained from wild-type and IL-17A-deficient colonized mice. These counts displayed IL-17A-dependent neutrophil migration. Antibody-mediated depletion of neutrophils in colonized mice caused reduced clearance compared to that in isotype-treated controls. Our data suggest that the Th17-associated immune response is required for nasal decolonization. This response is T cell dependent and mediated via IL-17A production and neutrophil influx. Th17-associated immune responses may be targeted for strategies to mitigate distal infections originating from persistentS. aureuscarriage in humans.


Sign in / Sign up

Export Citation Format

Share Document