In vitro and in vivo effects of a novel bioactive glass‐based cement used as a direct pulp capping agent

2018 ◽  
Vol 107 (1) ◽  
pp. 161-168 ◽  
Author(s):  
Kaori Hanada ◽  
Takahiko Morotomi ◽  
Ayako Washio ◽  
Naomi Yada ◽  
Kou Matsuo ◽  
...  
2015 ◽  
Vol 41 (5) ◽  
pp. 652-657 ◽  
Author(s):  
Siyi Liu ◽  
Sainan Wang ◽  
Yanmei Dong
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Naji Ziad Arandi ◽  
Tarek Rabi

Background. Direct pulp capping is a popular treatment modality among dentists. TheraCal LC is a calcium silicate-based material that is designed as a direct/indirect pulp capping material. The material might be very attractive for clinicians because of its ease of handling. Unlike other calcium silicate-based materials, TheraCal LC is resin-based and does not require any conditioning of the dentine surface. The material can be bonded with different types of adhesives directly after application. There has been considerable research performed on this material since its launching; however, there are no review articles that collates information and data obtained from these studies. This review discusses the various characteristics of the material with the aim of establishing a better understanding for its clinical use. Methods. A search was conducted using search engines (PubMed and Cochrane databases) in addition to reference mining of the articles that was used to locate other papers. The process of searching for the relevant studies was performed using the keywords pulp protection, pulp capping, TheraCal, and calcium silicates. Only articles in English published in peer-reviewed journals were included in the review. Conclusion. This review underlines the fact that further in vitro and in vivo studies are required before TheraCal LC can be used as a direct pulp capping material.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Julianne Coelho Silva ◽  
Tainah Oliveira Rifane ◽  
Antônio Ernando Ferreira-Junior ◽  
Ana Paula Alves ◽  
Richard Miron ◽  
...  

Objectives. To investigate physicochemical properties, dentin bonding, cytotoxicity, and in vivo pulp response of experimental self-adhesive composites tailored to direct pulp capping. Materials and Methods. Experimental composites were prepared with beta-tricalcium phosphate and hydroxyapatite nanoparticles adsorbed with simvastatin and glutathione added at 0% (control resin), 1 wt% (Res 1%), and 10 wt% (Res 10%). A commercial light-curable calcium hydroxide (Ca(OH)2) (Ultra-Blend Plus) was used as control material. The physicochemical properties investigated were flexural strength and modulus, calcium release, and degree of conversion. Dentin bonding was assessed by the push-out test. Proliferation and cell counting assays were performed to evaluate in vitro cytotoxicity using fluorescence microscopy. In vivo pulp capping was performed on molars of Wistar rats, which were euthanized after 14 days and evaluated by histological analysis. Results. No statistical difference was observed in flexural strength and cell viability ( p > 0.05 ). Res 10% presented higher modulus than control resin and Ca(OH)2. Also, Res 10% attained statistically higher degree of conversion when compared to other experimental composites. Ca(OH)2 showed higher calcium release after 28 and 45 days of storage, with no statistical difference at 45 days to Res 10%. All experimental composites achieved significantly higher bond strength when compared to Ca(OH)2. While no significant difference was observed in the cell proliferation rates, resins at lower concentrations showed higher cell viability. In vivo evaluation of pulp response demonstrated no pulp damage with experimental composites. Conclusions. The experimental composite investigated in this study achieved adequate physicochemical properties with minor in vivo pulpal inflammation and proved to be a valuable alternative for direct pulp capping.


2014 ◽  
Vol 38 (3) ◽  
pp. 201-206 ◽  
Author(s):  
SJ Swarup ◽  
A Rao ◽  
K Boaz ◽  
N Srikant ◽  
R Shenoy

Nano hydroxyapatite (Nano-HA) and Mineral Trioxide Aggregate (MTA) because of its better qualities can be used as an alternative to calcium hydroxide in direct pulp capping procedures. The aim of the study was to compare the response of exposed human pulp to Nano-HA, Mineral Trioxide Aggregate and calcium hydroxide. Study design: The study was done on 30 premolars, ranging from patients between 11-15 years. Intentional pulp capping was done using one of the experimental materials. The extracted teeth were then subjected to staining procedure and evaluated for dentin bridge and pulpal response after 15 and 30 days. Intragroup comparisons of the observed values were analyzed using Chi-square test. Results: Nano-HA and MTA produced continuous dentin bridges. Dentin bridge that was formed in MTA group had regular pattern of dentinal tubules but no tubules were seen in the nano-HA group. Dentin bridge was not observed in Dycal group for the 15 days period in majority of the sample and by 30 days dentin bridge was observed that were both continuous and interrupted in equal number of samples. The initial inflammatory response and necrosis was more with Nano-HA and calcium hydroxide which reduced with time. Conclusion: MTA showed no inflammatory changes in majority of the samples in both the study periods. Necrosis was least observed in MTA group followed by Nano-HA. Vascularity increased in Nano-HA group in the initial periods which reduced with increasing time. Based on the ability of nano-HA to produce complete dentinal bridges, favorable cellular and vascular response, the material could be considered as an substitute and could be tried used as a direct pulp capping agent.


CNS Spectrums ◽  
1998 ◽  
Vol 3 (10) ◽  
pp. 17-38 ◽  
Author(s):  
Franco Borsini

AbstractMyriad difficulties exist in analyzing the pharmacology of the serotonin 1A (5-HT1A) receptor. The receptor may demonstrate a different activity depending on the tissue or species used for analysis, the agent used, laboratory conditions, and differences between in vitro and in vivo effects of compounds. Affinity for 5-HT receptors also varies widely, presenting difficulties in drawing definitive conclusions on affinity values for various compounds. At least two possibilities exist to explain the diversity of pharmacology of 5-HT receptors. First, it is possible that different 5-HT1A receptor subtypes exist. Second, the 5-HT1A receptors may play a far more complex role than previously believed.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2223
Author(s):  
Manon Dominique ◽  
Nicolas Lucas ◽  
Romain Legrand ◽  
Illona-Marie Bouleté ◽  
Christine Bôle-Feysot ◽  
...  

CLPB (Caseinolytic peptidase B) protein is a conformational mimetic of α-MSH, an anorectic hormone. Previous in vivo studies have already shown the potential effect of CLPB protein on food intake and on the production of peptide YY (PYY) by injection of E. coli wild type (WT) or E. coli ΔClpB. However, until now, no study has shown its direct effect on food intake. Furthermore, this protein can fragment naturally. Therefore, the aim of this study was (i) to evaluate the in vitro effects of CLPB fragments on PYY production; and (ii) to test the in vivo effects of a CLPB fragment sharing molecular mimicry with α-MSH (CLPB25) compared to natural fragments of the CLPB protein (CLPB96). To do that, a primary culture of intestinal mucosal cells from male Sprague–Dawley rats was incubated with proteins extracted from E. coli WT and ΔCLPB after fragmentation with trypsin or after a heat treatment of the CLPB protein. PYY secretion was measured by ELISA. CLPB fragments were analyzed by Western Blot using anti-α-MSH antibodies. In vivo effects of the CLPB protein on food intake were evaluated by intraperitoneal injections in male C57Bl/6 and ob/ob mice using the BioDAQ® system. The natural CLPB96 fragmentation increased PYY production in vitro and significantly decreased cumulative food intake from 2 h in C57Bl/6 and ob/ob mice on the contrary to CLPB25. Therefore, the anorexigenic effect of CLPB is likely the consequence of enhanced PYY secretion.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


2004 ◽  
Vol 36 (6) ◽  
pp. 419-424 ◽  
Author(s):  
Juan Ma ◽  
Xue-Ling Liao ◽  
Bin Lou ◽  
Man-Ping Wu

Abstract High density lipoprotein (HDL) binds lipopolysaccharide (LPS or endotoxin) and neutralizes its toxicity. We investigated the function of Apolipoprotein A-I (ApoA-I), a major apolipoprotein in HDL, in this process. Mouse macrophages were incubated with LPS, LPS+ApoA-I, LPS+ApoA-I+LFF (lipoprotein-free plasma fraction d>1.210 g/ml), LPS+HDL, LPS+HDL+LFF, respectively. MTT method was used to detect the mortality of L-929 cells which were attacked by the release-out cytokines in LPS-activated macrophages. It was found that ApoA-I significantly decreased L-929 cells mortality caused by LPS treatment (LPS vs. LPS+ApoA-I, P<0.05) and this effect became even more significant when LFF was utilized (LPS vs. LPS+ApoA-I+LFF, P<0.01; LPS vs. LPS+HDL+LFF, P<0.01). There was no significant difference between LPS+ApoA-I+LFF and LPS+HDL+LFF treatment, indicating that ApoA-I was the main factor. We also investigated in vivo effects of ApoA-I on mouse mortality rate and survival time after LPS administration. We found that the mortality in LPS+ApoA-I group (20%) and in LPS+ApoA-I+LFF group (10%) was significantly lower than that in LPS group (80%) (P<0.05, P<0.01, respectively); the survival time was (43.20 ± 10.13) h in LPS+ApoA-I group and (46.80 ± 3.79) h in LPS+ApoA-I+LFF group, which were significantly longer than that in LPS group (16.25 ± 17.28) h (P<0.01). We also carried out in vitro binding study to investigate the binding capacity of ApoA-I and ApoA-I+LFF to fluorescence labeled LPS (FITC-LPS). It was shown that both ApoA-I and ApoA-I+LFF could bind with FITC-LPS, however, the binding capacity of ApoA-I+LFF to FITC-LPS (64.47 ± 8.06) was significantly higher than that of ApoA-I alone (24.35 ± 3.70) (P<0.01). The results suggest that: (1) ApoA-I has the ability to bind with and protect against LPS; (2) LFF enhances the effect of ApoA-I; (3) ApoA-I is the major contributor for HDL anti-endotoxin function.


Sign in / Sign up

Export Citation Format

Share Document