LINC00665 induces gastric cancer progression through activating Wnt signaling pathway

2019 ◽  
Vol 121 (3) ◽  
pp. 2268-2276 ◽  
Author(s):  
Bo Yang ◽  
Qingqing Bai ◽  
Huidong Chen ◽  
Kun Su ◽  
Chao Gao
Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 522
Author(s):  
Dehua Liu ◽  
Chenyu Sun ◽  
Nahyun Kim ◽  
Chandur Bhan ◽  
John Pocholo Whitaker Tuason ◽  
...  

Gastric cancer (GC) is the fifth most common cancer globally. Secreted frizzled-related proteins (SFRP) are important elements associated with the Wnt signaling pathway, and its dysregulated expression is found in multiple cancers. However, the function of distinct SFRPs in GC remains poorly understood. We investigated the differential expression, prognostic value, and immune cell infiltration of SFRPs in gastric cancer patients from the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan–Meier plotter, cBioPortal, STRING, Gene-MANIA, DAVID, MethSurv, and TIMER databases. We found that the expression levels of SFRP2 and SFRP4 were significantly increased in GC tissues, whereas the SFRP1 and SFRP5 expressions were reduced. SFRP1, SFRP2, and SFRP5 were significantly correlated with the clinical cancer stage in GC patients. Higher expression of SFRPs was associated with short overall survival (OS) in GC patients. Besides, high SFRPs methylation showed favorable OS in GC patients. The functions of SFRPs were primarily related to the Wnt signaling pathway, immune system development, and basal cell carcinoma. The expression of SFRPs was strongly correlated with immune infiltrating cells, including CD4+ T cells and macrophages in GC. Our study indicated that SFRPs could be potential targets of precision therapy and prognostic biomarkers for the survival of GC patients.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hong Chen ◽  
Lu Xu ◽  
Zhi-li Shan ◽  
Shu Chen ◽  
Hao Hu

Abstract Background Glutathione Peroxidase 8 (GPX8) as a member of the glutathione peroxidase (GPx) family plays an important role in anti-oxidation. Besides, dysregulation of GPX8 has been found in gastric cancer, but its detailed molecular mechanism in gastric cancer has not been reported. Methods Our study detected the expression of GPX8 in gastric cancer tissues and cell lines using immunohistochemistry (IHC), western blot and qRT-PCR, and determined the effect of GPX8 on gastric cancer cells using CCK-8, colony formation, transwell migration and invasion assays. Besides, the effect of GPX8 on the Wnt signaling pathway was determined by western blot. Furthermore, the transcription factor of GPX8 was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. In addition, the effect of GPX8 on tumor formation was measured by IHC and western blot. Results The over-expression of GPX8 was observed in gastric cancer tissues and cells, which facilitated the proliferation, migration and invasion of gastric cancer cells as well as the tumor growth. GPX8 knockdown effectively inhibited the growth of gastric cancer cells and tumors. Moreover, GPX8 could activate the Wnt signaling pathway to promote the cellular proliferation, migration and invasion through. Furthermore, FOXC1 was identified as a transcription factor of GPX8 and mediated GPX8 expression to affect cell development processes. Conclusions These findings contribute to understanding the molecular mechanism of GPX8 in gastric cancer. Additionally, GPX8 can be a potential biomarker for gastric cancer therapy.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hua Zhang ◽  
Haitao Huang ◽  
Xiaomei Xu ◽  
Haiying Wang ◽  
Jianxiang Wang ◽  
...  

Abstract Background Gastric cancer (GC) is one common cancer which occurs in the stomach leading to high mortality around the world. Long non-coding RNAs (lncRNAs) were found overexpressed or silenced in the occurrence and progression of multiple cancers including GC. Method The gene expression level in GC tissues and cells were analyzed by RT-qPCR. CCK-8, colony formation, flow cytometry and transwell assays were performed for the function analysis of HLA complex group 11 (HCG11). The mechanism study for HCG11 was conducted using RIP, RNA pull down and luciferase reporter assays. Results HCG11 was discovered highly expressed in GC tissues and cells. Depletion experiments were used to evaluate HCG11 silence on cell proliferation, migration and apoptosis. Moreover, Wnt signaling pathway was found as a tumor promoter in GC. RIP assay, RNA pull down assay and luciferase reporter assay were performed to illustrate the relationship of HCG11, miR-1276 and CTNNB1. Rescue assays revealed that HCG11/miR-1276/CTNNB1 axis regulated the incidence and development of GC. Tumor formation in mice proved that HCG11 was negatively correlated with miR-1276 and had positively correlation with CTNNB1. Conclusion Overall, HCG11 accelerated proliferation and migration in GC through miR-1276/CTNNB1 and Wnt signaling pathway, revealing that HCG11 could be a brand new target for GC.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1439
Author(s):  
Hyeon-Gu Kang ◽  
Won-Jin Kim ◽  
Myung-Giun Noh ◽  
Kyung-Hee Chun ◽  
Seok-Jun Kim

Spondin-2 (SPON2) is involved in cancer progression and metastasis of many tumors; however, its role and underlying mechanism in gastric cancer are still obscure. In this study, we investigated the role of SPON2 and related signaling pathway in gastric cancer progression and metastasis. SPON2 expression levels were found to be upregulated in gastric cancer cell lines and patient tissues compared to normal gastric epithelial cells and normal controls. Furthermore, SPON2 silencing was observed to decrease cell proliferation and motility and reduce tumor growth in xenograft mice. Conversely, SPON2 overexpression was found to increase cell proliferation and motility. Subsequently, we focused on regulatory mechanism of SPON2 in gastric cancer. cDNA microarray and in vitro study showed that Notch signaling is significantly correlated to SPON2 expression. Therefore, we confirmed how Notch signaling pathway regulate SPON2 expression using Notch signaling-related transcription factor interaction and reporter gene assay. Additionally, activation of Notch signaling was observed to increase cell proliferation, migration, and invasion through SPON2 expression. Our study demonstrated that Notch signaling-mediated SPON2 upregulation is associated with aggressive progression of gastric cancer. In conclusion, we suggest upregulated SPON2 via Notch signaling as a potential target gene to inhibit gastric cancer progression.


2020 ◽  
Vol 21 (16) ◽  
pp. 5901
Author(s):  
Te-Sheng Chang ◽  
Chung-Kuang Lu ◽  
Yung-Yu Hsieh ◽  
Kuo-Liang Wei ◽  
Wei-Ming Chen ◽  
...  

Gastric cancer (GC) is among the most treatment-refractory epithelial malignancies. Aberrant activation of Wnt/β-catenin-signaling has been implicated in a variety of human cancers, including gastric cancer. Here we report that the elevated expression of lymphoid enhancer binding factor 1 (Lef1) is associated with the TNM (tumor– node–metastasis) stage of gastric cancer. Subsequently, 2,4-diamino-quinazoline (2,4-DAQ), a selective inhibitor of Lef1, was identified to suppress the expression of Wnt/β-catenin target genes such as AXIN2, MYC and LGR5 and result in the suppression of gastric cancer cell growth through the apoptotic pathway. The 2,4-DAQ also exhibited an inhibitory effect on the migration/invasion of gastric cancer cells. Importantly, the treatment of human gastric tumor xenograft with 2,4-DAQ suppressed tumor growth in a nude mouse model. Furthermore, 2,4-DAQ appears effective on patient-derived organoids (PDOs). Transcriptome sequencing analysis also revealed that 2,4-DAQ are more effective on the gastric cancers that exhibit higher expression levels of Wnt-signaling pathway-related genes than their adjacent normal gastric tissues.


Sign in / Sign up

Export Citation Format

Share Document