Protection by an ACTH4-9analogue against the toxic effects of cisplatin and taxol on sensory neurons and glial cells in vitro

1994 ◽  
Vol 39 (2) ◽  
pp. 178-185 ◽  
Author(s):  
E. M. Hol ◽  
V. Mandys ◽  
P. Sodaar ◽  
W. H. Gispen ◽  
P. R. Bär
2020 ◽  
Vol 105 ◽  
pp. 103499
Author(s):  
Linda-Isabell Schmitt ◽  
Markus Leo ◽  
Andrea Kutritz ◽  
Christoph Kleinschnitz ◽  
Tim Hagenacker

Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 238-255
Author(s):  
Esther M. Sánchez-Carnerero ◽  
Marina Russo ◽  
Andreas Jakob ◽  
Lucie Muchová ◽  
Libor Vítek ◽  
...  

Carbon monoxide (CO) is an endogenously produced signaling molecule involved in the control of a vast array of physiological processes. One of the strategies to administer therapeutic amounts of CO is the precise spatial and temporal control over its release from photoactivatable CO-releasing molecules (photoCORMs). Here we present the synthesis and photophysical and photochemical properties of a small library of meso-carboxy BODIPY derivatives bearing different substituents at positions 2 and 6. We show that the nature of substituents has a major impact on both their photophysics and the efficiency of CO photorelease. CO was found to be efficiently released from π-extended 2,6-arylethynyl BODIPY derivatives possessing absorption spectra shifted to a more biologically desirable wavelength range. Selected photoCORMs were subjected to in vitro experiments that did not reveal any serious toxic effects, suggesting their potential for further biological research.


Chemosphere ◽  
2021 ◽  
Vol 272 ◽  
pp. 129616
Author(s):  
Baoming Wang ◽  
Hui Chen ◽  
Dia Xenaki ◽  
Jiayan Liao ◽  
Christine Cowie ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


1988 ◽  
Vol 15 (3) ◽  
pp. 191-193
Author(s):  
Inger Bondesson ◽  
Björn Ekwall ◽  
Kjell Stenberg ◽  
Lennart Romert ◽  
Erik Walum

A programme for a multicentre evaluation study of in vitro cytotoxicity (MEIC) has been proposed. The programme represents an attempt to evaluate the correlation between in vitro cytotoxicity and both lethal and sublethal toxic effects in man. Instructions for laboratories wishing to participate are given.


2021 ◽  
pp. 1-13
Author(s):  
Claire Rühlmann ◽  
David Dannehl ◽  
Marcus Brodtrück ◽  
Andrew C. Adams ◽  
Jan Stenzel ◽  
...  

Background: To date, there are no effective treatments for Alzheimer’s disease (AD). Thus, a significant need for research of therapies remains. Objective: One promising pharmacological target is the hormone fibroblast growth factor 21 (FGF21), which is thought to be neuroprotective. A clinical candidate for medical use could be the FGF21 analogue LY2405319 (LY), which has a specificity and potency comparable to FGF21. Methods: The present study investigated the potential neuroprotective effect of LY via PPARγ/apoE/abca1 pathway which is known to degrade amyloid-β (Aβ) plaques by using primary glial cells and hippocampal organotypic brain slice cultures (OBSCs) from 30- and 50-week-old transgenic APPswe/PS1dE9 (tg) mice. By LY treatment of 52-week-old tg mice with advanced Aβ deposition, we further aimed to elaborate the effect of LY on AD pathology in vivo. Results: LY application to primary glial cells caused an upregulation of pparγ, apoE, and abca1 mRNA expression and significantly decreased number and area of Aβ plaques in OBSCs. LY treatment in tg mice increased cerebral [18F] FDG uptake and N-acetylaspartate/creatine ratio indicating enhanced neuronal activity and integrity. Although LY did not reduce the number of Aβ plaques in tg mice, the number of iba1-positive cells was significantly decreased indicating reduced microgliosis. Conclusion: These data identified LY in vitro as an activator of Aβ degrading genes leading to cerebral Aβ load amelioration in early and late AD pathology. Although Aβ plaque reduction by LY failed in vivo, LY may be used as therapeutic agent to treat AD-related neuroinflammation and impaired neuronal integrity.


2003 ◽  
Vol 14 (10) ◽  
pp. 606-613 ◽  
Author(s):  
Concepción Sánchez-Moreno ◽  
Manuel Paniagua ◽  
Antonio Madrid ◽  
Antonio Martín

Sign in / Sign up

Export Citation Format

Share Document