Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo

2007 ◽  
Vol 25 (11) ◽  
pp. 1488-1497 ◽  
Author(s):  
Tara L. Aghaloo ◽  
Christopher M. Amantea ◽  
Catherine M. Cowan ◽  
Jennifer A. Richardson ◽  
Ben M. Wu ◽  
...  
2021 ◽  
Vol 22 (3) ◽  
pp. 1169
Author(s):  
Yuhan Chang ◽  
Chih-Chien Hu ◽  
Ying-Yu Wu ◽  
Steve W. N. Ueng ◽  
Chih-Hsiang Chang ◽  
...  

Bacterial infection in orthopedic surgery is challenging because cell wall components released after bactericidal treatment can alter osteoblast and osteoclast activity and impair fracture stability. However, the precise effects and mechanisms whereby cell wall components impair bone healing are unclear. In this study, we characterized the effects of lipopolysaccharide (LPS) on bone healing and osteoclast and osteoblast activity in vitro and in vivo and evaluated the effects of ibudilast, an antagonist of toll-like receptor 4 (TLR4), on LPS-induced changes. In particular, micro-computed tomography was used to reconstruct femoral morphology and analyze callus bone content in a femoral defect mouse model. In the sham-treated group, significant bone bridge and cancellous bone formation were observed after surgery, however, LPS treatment delayed bone bridge and cancellous bone formation. LPS inhibited osteogenic factor-induced MC3T3-E1 cell differentiation, alkaline phosphatase (ALP) levels, calcium deposition, and osteopontin secretion and increased the activity of osteoclast-associated molecules, including cathepsin K and tartrate-resistant acid phosphatase in vitro. Finally, ibudilast blocked the LPS-induced inhibition of osteoblast activation and activation of osteoclast in vitro and attenuated LPS-induced delayed callus bone formation in vivo. Our results provide a basis for the development of a novel strategy for the treatment of bone infection.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 154.1-154
Author(s):  
M. Pfeiffenberger ◽  
A. Damerau ◽  
P. Hoff ◽  
A. Lang ◽  
F. Buttgereit ◽  
...  

Background:Approximately 10% of fractures lead to significant fracture healing disorders, with a tendency to further increase due to the aging population. Of note, especially immunosuppressed patients with ongoing inflammation show difficulties in the correct course of fracture healing leading to fracture healing disorders. Most notably, invading immune cells and secreted cytokines are considered to provide an inflammatory microenvironment within the fracture gap, primarily during the initial phase of fracture healing. Current research has the focus on small animal models, facing the problem of translation towards the human system. In order to improve the therapy of fracture healing disorders, we have developed a human cell-basedin vitromodel to mimic the initial phase of fracture healing adequately. This model will be used for the development of new therapeutic strategies.Objectives:Our aim is to develop anin vitro3D fracture gap model (FG model) which mimics thein vivosituation in order to provide a reliable preclinical test system for fracture healing disorders.Methods:To assemble our FG model, we co-cultivated coagulated peripheral blood and primary human mesenchymal stromal cells (MSCs) mimicking the fracture hematoma (FH model) together with a scaffold-free bone-like construct mimicking the bony part of the fracture gap for 48 h under hypoxic conditions (n=3), in order to reflect thein vivosituation after fracture most adequately. To analyze the impact of the bone-like construct on thein vitroFH model with regard to its osteogenic induction capacity, we cultivated the fracture gap models in either medium with or without osteogenic supplements. To analyze the impact of Deferoxamine (DFO, known to foster fracture healing) on the FG model, we further treated our FG models with either 250 µmol DFO or left them untreated. After incubation and subsequent preparation of the fracture hematomas, we evaluated gene expression of osteogenic (RUNX2,SPP1), angiogenic (VEGF,IL8), inflammatory markers (IL6,IL8) and markers for the adaptation towards hypoxia (LDHA,PGK1) as well as secretion of cytokines/chemokines using quantitative PCR and multiplex suspension assay, respectively.Results:We found via histology that both the fracture hematoma model and the bone-like construct had close contact during the incubation, allowing the cells to interact with each other through direct cell-cell contact, signal molecules or metabolites. Additionally, we could show that the bone-like constructs induced the upregulation of osteogenic markers (RUNX2, SPP1) within the FH models irrespective of the supplementation of osteogenic supplements. Furthermore, we observed an upregulation of hypoxia-related, angiogenic and osteogenic markers (RUNX2,SPP1) under the influence of DFO, and the downregulation of inflammatory markers (IL6,IL8) as compared to the untreated control. The latter was also confirmed on protein level (e.g. IL-6 and IL-8). Within the bone-like constructs, we observed an upregulation of angiogenic markers (RNA-expression ofVEGF,IL8), even more pronounced under the treatment of DFO.Conclusion:In summary, our findings demonstrate that our establishedin vitroFG model provides all osteogenic cues to induce the initial bone healing process, which could be enhanced by the fracture-healing promoting substance DFO. Therefore, we conclude that our model is indeed able to mimic correctly the human fracture gap situation and is therefore suitable to study the influence and efficacy of potential therapeutics for the treatment of bone healing disorders in immunosuppressed patients with ongoing inflammation.Disclosure of Interests:Moritz Pfeiffenberger: None declared, Alexandra Damerau: None declared, Paula Hoff: None declared, Annemarie Lang: None declared, Frank Buttgereit Grant/research support from: Amgen, BMS, Celgene, Generic Assays, GSK, Hexal, Horizon, Lilly, medac, Mundipharma, Novartis, Pfizer, Roche, and Sanofi., Timo Gaber: None declared


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1797
Author(s):  
Manuel Toledano ◽  
Marta Vallecillo-Rivas ◽  
María T. Osorio ◽  
Esther Muñoz-Soto ◽  
Manuel Toledano-Osorio ◽  
...  

Barrier membranes are employed in guided bone regeneration (GBR) to facilitate bone in-growth. A bioactive and biomimetic Zn-doped membrane with the ability to participate in bone healing and regeneration is necessary. The aim of the present study is to state the effect of doping the membranes for GBR with zinc compounds in the improvement of bone regeneration. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken, focusing on the antibacterial effects, physicochemical and biological properties of Zn-loaded membranes. Bioactivity, bone formation and cytotoxicity were analyzed. Microstructure and mechanical properties of these membranes were also determined. Zn-doped membranes have inhibited in vivo and in vitro bacterial colonization. Zn-alloy and Zn-doped membranes attained good biocompatibility and were found to be non-toxic to cells. The Zn-doped matrices showed feasible mechanical properties, such as flexibility, strength, complex modulus and tan delta. Zn incorporation in polymeric membranes provided the highest regenerative efficiency for bone healing in experimental animals, potentiating osteogenesis, angiogenesis, biological activity and a balanced remodeling. Zn-loaded membranes doped with SiO2 nanoparticles have performed as bioactive modulators provoking an M2 macrophage increase and are a potential biomaterial for promoting bone repair. Zn-doped membranes have promoted pro-healing phenotypes.


2021 ◽  
Vol 2 ◽  
Author(s):  
Anushree Vijaykumar ◽  
Mina Mina

Wnt/β-catenin signaling is known to play essential roles in odontoblast differentiation and reparative dentin formation. Various Wnt activators including LiCl have been increasingly studied for their effectiveness to induce repair of the dentin-pulp complex. LiCl is a simple salt thought to activate Wnt/β-catenin signaling by inhibiting GSK3β. Previous in vitro and in vivo studies showed that LiCl increased odontoblast differentiation and enhanced reparative dentin formation. However, the underlying molecular and cellular mechanisms by which LiCl regulates odontoblast and osteoblast differentiation during reparative dentinogenesis are not well-understood. Our in vitro studies show that exposure of early dental pulp progenitors to LiCl increased the survival and the pool of αSMA+ progenitors, leading to enhanced odontoblast and osteoblast differentiation. The positive effects of LiCl in the differentiation of osteoblasts and odontoblasts from αSMA+ progenitors are mediated by Wnt/β-catenin signaling. Our results also showed that continuous and late exposure of dental pulp cells to LiCl increased the expression of odontoblast markers through Wnt/β-catenin signaling, and the number of odontoblasts expressing DMP1-Cherry and DSPP-Cerulean transgenes. However, unlike the early treatment, both continuous and late treatments decreased the expression of Bsp and the expression of BSP-GFPtpz transgene. These observations suggest that prolonged treatment with LiCl in more mature cells of the dental pulp has an inhibitory effect on osteoblast differentiation. The inhibitory effects of LiCl on osteogenesis and Bsp were not mediated through Wnt/β-catenin signaling. These observations suggest that the effects of LiCl, and GSK3β antagonists on reparative dentinogenesis involve multiple pathways and are not specific to Wnt/β-catenin signaling.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2600 ◽  
Author(s):  
Luna Ge ◽  
Yazhou Cui ◽  
Kai Cheng ◽  
Jinxiang Han

Isopsoralen (IPRN), one of the main effective ingredients in Psoralea corylifolia Linn, has a variety of biological effects, including antiosteoporotic effects. In vivo studies show that IPRN can increase bone strength and trabecular bone microstructure in a sex hormone deficiency-induced osteoporosis model. However, the mechanism underlying this osteogenic potential has not been investigated in detail. In the present study, we investigated the molecular mechanism of IPRN-induced osteogenesis in MC3T3-E1 cells. Isopsoralen promoted osteoblast differentiation and mineralization, increased calcium nodule levels and alkaline phosphatase (ALP) activity and upregulated osteoblast markers, including ALP, runt-related transcription factor 2 (RUNX2), and collagen type I alpha 1 chain (COL1A1). Furthermore, IPRN limited the nucleocytoplasmic shuttling of aryl hydrocarbon receptor (AhR) by directly binding to AhR. The AhR target gene cytochrome P450 family 1 subfamily A member 1 (CYP1A1) was also inhibited in vitro and in vivo. This effect was inhibited by the AhR agonists indole-3-carbinol (I3C) and 3-methylcholanthrene (3MC). Moreover, IPRN also increased estrogen receptor alpha (ERα) expression in an AhR-dependent manner. Taken together, these results suggest that IPRN acts as an AhR antagonist and promotes osteoblast differentiation via the AhR/ERα axis.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Ziming Liu ◽  
Yuwan Li ◽  
Qi You ◽  
Jibin Yang ◽  
...  

Background. FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective. The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods. In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3×105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results. In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion. hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3267
Author(s):  
Martina Chiu ◽  
Denise Toscani ◽  
Valentina Marchica ◽  
Giuseppe Taurino ◽  
Federica Costa ◽  
...  

Multiple myeloma (MM) cells consume huge amounts of glutamine and, as a consequence, the amino acid concentration is lower-than-normal in the bone marrow (BM) of MM patients. Here we show that MM-dependent glutamine depletion induces glutamine synthetase in stromal cells, as demonstrated in BM biopsies of MM patients, and reproduced in vitro by co-culturing human mesenchymal stromal cells (MSCs) with MM cells. Moreover, glutamine depletion hinders osteoblast differentiation of MSCs, which is also severely blunted by the spent, low-glutamine medium of MM cells, and rescued by glutamine restitution. Glutaminase and the concentrative glutamine transporter SNAT2 are induced during osteoblastogenesis in vivo and in vitro, and both needed for MSCs differentiation, pointing to enhanced the requirement for the amino acid. Osteoblastogenesis also triggers the induction of glutamine-dependent asparagine synthetase (ASNS), and, among non-essential amino acids, asparagine rescues differentiation of glutamine-starved MSCs, by restoring the transcriptional profiles of differentiating MSCs altered by glutamine starvation. Thus, reduced asparagine availability provides a mechanistic link between MM-dependent Gln depletion in BM and impairment of osteoblast differentiation. Inhibition of Gln metabolism in MM cells and supplementation of asparagine to stromal cells may, therefore, constitute novel approaches to prevent osteolytic lesions in MM.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Nihal AlMuraikhi ◽  
Nuha Almasoud ◽  
Sarah Binhamdan ◽  
Ghaydaa Younis ◽  
Dalia Ali ◽  
...  

Background. Hedgehog (Hh) signaling is essential for osteoblast differentiation of mesenchymal progenitors during endochondral bone formation. However, the critical role of Hh signaling during adult bone remodeling remains to be elucidated. Methods. A Smoothened (SMO) antagonist/Hedgehog inhibitor, BMS-833923, identified during a functional screening of a stem cell signaling small molecule library, was investigated for its effects on the osteoblast differentiation of human skeletal (mesenchymal) stem cells (hMSC). Alkaline phosphatase (ALP) activity and Alizarin red staining were employed as markers for osteoblast differentiation and in vitro mineralization capacity, respectively. Global gene expression profiling was performed using the Agilent® microarray platform. Effects on in vivo ectopic bone formation were assessed by implanting hMSC mixed with hydroxyapatite-tricalcium phosphate granules subcutaneously in 8-week-old female nude mice, and the amount of bone formed was assessed using quantitative histology. Results. BMS-833923, a SMO antagonist/Hedgehog inhibitor, exhibited significant inhibitory effects on osteoblast differentiation of hMSCs reflected by decreased ALP activity, in vitro mineralization, and downregulation of osteoblast-related gene expression. Similarly, we observed decreased in vivo ectopic bone formation. Global gene expression profiling of BMS-833923-treated compared to vehicle-treated control cells, identified 348 upregulated and 540 downregulated genes with significant effects on multiple signaling pathways, including GPCR, endochondral ossification, RANK-RANKL, insulin, TNF alpha, IL6, and inflammatory response. Further bioinformatic analysis employing Ingenuity Pathway Analysis revealed significant enrichment in BMS-833923-treated cells for a number of functional categories and networks involved in connective and skeletal tissue development and disorders, e.g., NFκB and STAT signaling. Conclusions. We identified SMO/Hedgehog antagonist (BMS-833923) as a powerful inhibitor of osteoblastic differentiation of hMSC that may be useful as a therapeutic option for treating conditions associated with high heterotopic bone formation and mineralization.


Sign in / Sign up

Export Citation Format

Share Document