scholarly journals Platelet‐rich fibrin elicits an anti‐inflammatory response in macrophages in vitro

2019 ◽  
Vol 91 (2) ◽  
pp. 244-252 ◽  
Author(s):  
Jila Nasirzade ◽  
Zahra Kargarpour ◽  
Sadegh Hasannia ◽  
Franz Josef Strauss ◽  
Reinhard Gruber
2021 ◽  
Vol 22 (21) ◽  
pp. 11333
Author(s):  
Zahra Kargarpour ◽  
Jila Nasirzade ◽  
Layla Panahipour ◽  
Richard J. Miron ◽  
Reinhard Gruber

Chronic inflammation is a pathological process where cells of the mesenchymal lineage become a major source of inflammatory mediators. Platelet-rich fibrin (PRF) has been shown to possess potent anti-inflammatory activity in macrophages, but its impact on mesenchymal cells has not been investigated. The aim of this study was, therefore, to expose mesenchymal cells to inflammatory cytokines together with lysates generated from liquid platelet-poor plasma (PPP), the cell-rich buffy coat layer (BC; concentrated-PRF or C-PRF), and the remaining red clot layer (RC), following centrifugation of blood. Heating PPP generates an albumin gel (Alb-gel) that when mixed back with C-PRF produces Alb-PRF. Membranes prepared from solid PRF were also subjected to lysis. We report here that lysates of PPP, BC, and PRF decreased the cytokine-induced expression of interleukin 6 (IL6) and nitric oxide synthase (iNOS) in the bone marrow-derived ST2 cells. Consistently, PPP, BC, and PRF greatly decreased the phosphorylation and nuclear translocation of p65 in ST2 cells. The inflammatory response caused by Pam3CSK4 was reduced accordingly. Moreover, PPP, BC, and PRF reduced the enhanced expression of inflammatory mediators IL6 and iNOS in 3T3-L1 pre-adipocyte mesenchymal cells, and iNOS and CCL5 in murine calvarial cells. Surprisingly, PRF lysates were not effective in reducing the inflammatory response of human gingival fibroblasts and HSC2 epithelial cells. The data from the present study suggest that both liquid PRF and solid PRF exert potent anti-inflammatory activity in murine mesenchymal cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yiyi Jin ◽  
Jianchang Qian ◽  
Xin Ju ◽  
Xiaodong Bao ◽  
Li Li ◽  
...  

Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.


2021 ◽  
Author(s):  
Yun Ding ◽  
Pengjie Tu ◽  
Yiyong Chen ◽  
Yangyun Huang ◽  
Xiaojie Pan ◽  
...  

Abstract Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia-reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo.Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by tail vein injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with hypoxic reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs.Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by PPARγ pathway; the anti-apoptotic effects might be mediated by the PI3K/Ak pathway.Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3445-3445
Author(s):  
Martin Bilban ◽  
Sherrie L. Otterbein ◽  
Emeka Ifedigbo ◽  
Keiji Enjyoji ◽  
Anny Usheva ◽  
...  

Abstract Carbon monoxide (CO) at low concentrations has generated recent interest due to its ability to modulate the inflammatory response associated with chronic graft rejection, vascular injury and septic shock. Both in vivo and in vitro CO can inhibit the expression of pro-inflammatory genes such as TNFα in macrophages while simultaneously increasing the expression of the anti-inflammatory cytokine IL-10. The mechanisms by which this occurs are still unclear. To better understand the mechanisms underlying the effects of CO, we employed the Affymetrix GeneChip technology to evaluate the time-dependent expression patterns of >12,000 genes in macrophages stimulated with bacterial endotoxin (LPS) in the presence or absence of a low concentration of CO previously demonstrated to evoke an anti-inflammatory response. We were particularly interested whether CO would, by itself, modulate in a specific manner the expression of proteins that might explain the anti-inflammatory effects observed following subsequent administration of endotoxin. RAW 264.7 murine macrophages were grown to 75% confluency and then exposed to CO (250 ppm) for 3 hr prior to administration of LPS (10 ng/ml). At 0, 15, 30, 60, 120 and 240 min thereafter, total RNA was isolated by standard methods and the RNA was then labeled and hybridized to U74Av2 GeneChips. Of >12,000 genes assessed, 116 of 270 that were LPS-responsive were affected by CO treatment. CO inhibited the majority of LPS-induced pro-inflammatory cytokines and acute phase proteins including expression of early growth response-1 (Egr-1), a transcription factor that serves as a central intermediary regulating many genes. Egr-1 was nearly completely inhibited by CO as was Egr-1-dependent expression of tissue factor (TF) and PAI-1. Treatment of cells with CO alone led to a rapid early increase in PPARγ, the expression of which was essential for the anti-inflammatory effects of CO. Inhibition of PPARγ using the selective chemical inhibitor GW9662 reversed the CO inhibitory effects on LPS-induced Egr-1 and TF expression. Correlative in vivo experiments in mice showed that CO pre-treatment blocked endotoxin-induced Egr-1 expression and decreased markers of lung inflammmation the effects of which were also lost with inhibition of PPARγ. Our analyses of gene expression patterns has led to the first molecular understanding of how treatment with CO, in this case by inducing PPARγ, blocks the pro-inflammatory response. These experiments provide novel insights into the mechanisms and pathophysiology of endotoxic shock and identify cellular targets by which CO mediates these cytoprotective effects.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Francesco Piarulli ◽  
Giovanni Sartore ◽  
Annalisa Sechi ◽  
Daniela Basso ◽  
Paola Fogar ◽  
...  

This study aims to assess the proinflammatory interleukin 1β (IL-1β) and anti-inflammatory IL-10 production by monocytes from 38 patients with type 2 diabetes and 31 controls in different glucose concentrations. Monocytes were incubated in low (2.5 mmol/L)-, normal (5.0 mmol/L)-, and high (20 mmol/L)-glucose conditions in the presence and absence of lipopolysaccharide (LPS). Monocytes from both patients and controls only produced a significant increase in IL-1β in low-glucose conditions (p<0.01), and this phenomenon was amplified in the presence of LPS, while it was not seen in normal- or high-glucose conditions, not even in the presence of LPS stimulation. There was no increase in IL-10 production by monocytes from either diabetic patients or controls using whatever glucose concentrations, except when treated with LPS in normal-glucose conditions. These findings seem to suggest that low-glucose conditions induce an inflammatory response in monocytes in all individuals, as an intrinsic capacity of this cell line. On the other hand, monocytes only retain their anti-inflammatory ability in response to known inflammatory stimuli such as LPS, under normal-glucose concentrations. In conclusion, human monocytes express an inflammatory pattern in low-glucose conditions in vitro. This response could contribute to explaining the higher cardiovascular risk induced by hypoglycemia in diabetic patients.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 108.1-109
Author(s):  
F. Oliviero ◽  
F. Galuppini ◽  
A. Scanu ◽  
P. Galozzi ◽  
V. Lazzarin ◽  
...  

Background:Acute calcium pyrophosphate (CPP) crystal-induced inflammation is characterized by the massive release of cytokines and pro-inflammatory mediators and, from a clinical point of view, pain and limited joint function. Contrary to the precipitation of urate crystals that can be prevented through the use of hypouricemic drugs, there is no pharmacological therapy that can prevent the formation of pyrophosphate crystals.Polydatin (PD),a natural precursor of resveratrol, is a stilbenoid mainly contained in grape juice and bark of Polygonum Cuspidate. Its antioxidant, anti-inflammatory and immunomodulating properties have been demonstrated in several experimental models. We have recently shown that this compound is able to prevent the inflammatory response to pathogenic crystals in vitro (1).Objectives:The aim of this study was to assess the anti-inflammatory preventing effect of polydatin in the mouse model of acute crystal-induced arthritis.Methods:A suspension of sterile CPP crystals (0.3 mg/20 μL PBS) have been injected intra-articularly (i.a.) into one ankle joint of Balb/c mice under isoflurane anesthesia. Animals were randomized in 5 groups: 1- CPP injection, 2- CPP + PD, 3- CPP + colchicine (control drug), 4- CPP + vehicle (control. N 1), 5- PBS injection (control N. 2). Polydatin and colchicine were administered by gavage (respectively 40 mg/kg and 1mg/kg in 200 μL PBS/EtOH/glucose) at 24, 15 and 1 h before and 1, 6 and 24 h after (prophylactic model) or 1, 6 and 24 h after (therapeutic model) i.a. injection of CPP crystals.Ankle swelling was measured at different time points using a precision caliper. After 48h (peak of the acute phase) mice were euthanized and blood and ankle joints were collected for inflammatory cytokine (IL-1ß and KC) determination and histological analysis, respectively.Results:The mean change in ankle swelling after i.a injection was 0.595±0.434 mm. Prophylactic treatment with PD and colchicine significantly diminished ankle swelling to 0.175±0.115 mm and 0.137±0.100 mm, respectively (Kruskal Wallis p 0.0025; Dunn’s post test p < 0.01 CPP vs PD+CPP). The therapeutic administration of PD did not have significant effects on delta swelling (0.468±0.372 mm - PD vs 0.243±0.152 mm - colchicine). In mice treated with CPP crystals, histological analysis revealed areas of edema and increased cell infiltrate in articular and periarticular tissues and the presence of reactive lymphnodes. Tissue necrosis around inflamed tissue has been observed. Treatment with PD importantly reduced cell infiltrate in the prophylactic but not in the therapeutic protocol.Serum IL-1ß and KC levels, which increased significantly (p<0.05) after 48h from i.a injection, diminished in non significant manner after prophylactic and therapeutic treatment. The gene expression study revealed a reduction of IL-1ß and KC mRNA after PD and colchicine treatment in both groups.Conclusion:PD can effectively prevent acute inflammatory response to crystals in the mouse model of CPP arthritis. Oral PD prophylactic treatment showed a similar effect of colchicine in reducing ankle swelling and cell infiltrate. However, only colchicine showed to be effective in the therapeutic protocol.These results raise the possibility that PD might have utility in the prevention of crystal-induced acute attacks in humans.References:[1]Oliviero F, et al. Polydatin and resveratrol inhibit the inflammatory process induced by urate and pyrophosphate crystals in thp-1 cells.Foods 2019 Nov 7;8(11). pii: E560.Disclosure of Interests:Francesca Oliviero: None declared, Francesca Galuppini: None declared, Anna Scanu: None declared, Paola Galozzi: None declared, Vanni Lazzarin: None declared, Paolo Sfriso: None declared, Gianpietro Ravagnan: None declared, Roberta Ramonda Speakers bureau: Novartis, Celgene, Janssen, Pfizer, Abbvie, Lilly, Paolo Spinella: None declared, LEONARDO PUNZI: None declared, Gianmaria Pennelli: None declared, Roberto Luisetto: None declared


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1292-1292
Author(s):  
Sanjiv Kumar ◽  
Ciprian Anea ◽  
Itia Lee ◽  
Aluya Oseghale ◽  
Julia Brittain

Abstract Sickle cell disease (SCD) is a pro-inflammatory condition. Levels of TNF-α, IL-6, IL-8, and IL-10 are elevated. There is clear evidence of endothelial cells (EC) dysfunction, and increased leukocyte, and erythrocyte adhesion in patients even in the non-crisis "steady state" condition. Additional insult, either via infection or vaso-occlusive ischemia, induce a dramatic increase in inflammation and EC dysfunction in SCD. Furthermore, there is a kindling of coagulation activation in patients with SCD. We, and others, have reported elevated levels of thrombin and monocyte tissue factor (TF) expression in patients. Both thrombin and monocyte TF expression increase during acute clinical events. In addition to the chronic impairment of lung function, acute chest syndrome (ACS) adds further insult to lung and cardiovascular impairment. In fact, ACS is the leading cause of sudden death in patients with SCD. Although there are multiple etiologies for ACS, infection/sepsis and the dramatic innate immune and coagulation response to it remain a major contributor to morbidity and mortality during ACS. Novel methods to reduce the inflammatory response during infection are needed as are methods that normalize the chronic pro-inflammatory state. Chaperone proteins, namely HSP90 and HSP70, are known agents that participate in inflammation and thus have significant potential to influence the inflammatory, pro-coagulant burden. Therefore, in this study, we wanted to evaluate the novel anti-inflammatory, anti-coagulatory properties of the chaperone proteins in SCD. We had previously determined that inhibition of HSP90 using the drug AUY-922 could block the bacterial toxin lipopolysaccharide (LPS) - induced TF expression and pro-inflammatory cytokine release from monocytes. Therefore, we used the Townes mouse model of SCD to evaluate AUY-922 in a pre-clinical study. Townes mice with SCD or without were administered AUY-922 intraperitoneal (IP) for 4 days prior to a 6 hour LPS-mediated induction of the inflammatory response and coagulation activation. Notably, the dose of LPS failed to induce any pro-inflammatory response in the AA mice (n=24). However, LPS-induced an exaggerated response in the SS mice. Levels of TNF-α, IL-6, IL-8, and IL-10 were elevated up to 40,000 fold over control treated SS mice. Pre-treatment with AUY-922 either completely ablated, or significantly attenuated the inflammatory cytokine response and normalized EC function. Furthermore, the treatment with AUY-922 doubled the amount of the anti-inflammatory chaperone molecule HSP70 in the livers of the SS mice. This particular result suggested that the function of HSP90 could be spared, and the induction of HSP70 was potentially sufficient to protect against the LPS-induced insult. Of note, the main function of HSP70 is cytoprotection in response to oxidative and febrile stress. Therefore, we next sought to determine, in a proof of principle in vitro study, whether induction of HSP70 alone was sufficient to block LPS-induced cytokine release and coagulation activation. We treated human monocytes with the HSP70 inducer, celastrol for 24h, followed by treatment with LPS (1µg/ml). We observed a significant release of the cytokines IL-6 and TNF-α with LPS treatment. However, induction of HSP70 via celastrol was sufficient to block this inflammatory response. Furthermore, we observed that celastrol blocked the LPS-induced, TF-specific clotting of plasma in vitro. Interestingly, we also observed that conditioned media from celastrol treated monocytes could block LPS-induced IL-6 release in an HSP70 dependent manner. Thus, secreted HSP70 was an active participant in cellular protection from LPS-induced insult. Initial studies suggest that secreted HSP70 levels may be lower in patients with SCD than in unaffected individuals. Therefore, replacement of this chaperone may be of significant benefit as therapeutic. Thus, taken together, our data demonstrate in both a pre-clinical and an in vitro proof of principle study, that the chaperone proteins HSP90 and HSP70 are attractive targets at reducing the inflammatory burden and associated acute lung injury in SCD. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xiumei Huang ◽  
Bo Li ◽  
Lianzhong Shen

This work is to study the anti-inflammatory effect and its mechanisms of sophoridine in vitro and in vivo. For this aim, the influences of sophoridine on several inflammatory mediators were investigated. Excessive inflammatory response in vitro model was developed by using lipopolysaccharide (LPS) to stimulate the mouse peritoneal macrophages and HL-60 cells to produce IL-6 and IL-8. Carrageenin-induced mouse paw edema model was used as inflammatory response in vivo model. MTT method, ultraviolet spectrophotometric method, and radioimmunoassay were used to measure the changes of TNFα, IL-6, PGE2, and IL-8 in in vitro cell culture supernatant or in the local inflammatory exudates. The results showed that sophoridine inhibited the production of IL-8 in in vitro cell culture supernatant and inhibited the production of TNFα, PGE2, and IL-8 in the local inflammatory exudates but had no significant effects on the production of IL-6 in vitro and in vivo. It is demonstrated that sophoridine’s anti-inflammatory effect was due to its ability to inhibit the production of cytokine and inflammatory mediators.


Sign in / Sign up

Export Citation Format

Share Document