Cytotoxic Effects of Methionine Alkyl Esters and Amides in Normal and Neoplastic Cell Lines

1989 ◽  
Vol 78 (6) ◽  
pp. 465-469 ◽  
Author(s):  
Mark A. Clement ◽  
James M. Chapman ◽  
Joseph Roberts
Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 466
Author(s):  
Chen Chen ◽  
Samuel Haddox ◽  
Yue Tang ◽  
Fujun Qin ◽  
Hui Li

Gene fusions and their products (RNA and protein) have been traditionally recognized as unique features of cancer cells and are used as ideal biomarkers and drug targets for multiple cancer types. However, recent studies have demonstrated that chimeric RNAs generated by intergenic alternative splicing can also be found in normal cells and tissues. In this study, we aim to identify chimeric RNAs in different non-neoplastic cell lines and investigate the landscape and expression of these novel candidate chimeric RNAs. To do so, we used HEK-293T, HUVEC, and LO2 cell lines as models, performed paired-end RNA sequencing, and conducted analyses for chimeric RNA profiles. Several filtering criteria were applied, and the landscape of chimeric RNAs was characterized at multiple levels and from various angles. Further, we experimentally validated 17 chimeric RNAs from different classifications. Finally, we examined a number of validated chimeric RNAs in different cancer and non-cancer cells, including blood from healthy donors, and demonstrated their ubiquitous expression pattern.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4288
Author(s):  
Fernanda Malhão ◽  
Ana Catarina Macedo ◽  
Carla Costa ◽  
Eduardo Rocha ◽  
Alice Abreu Ramos

Fucoxanthin (Fx) is a carotenoid derived from marine organisms that exhibits anticancer activities. However, its role as a potential drug adjuvant in breast cancer (BC) treatment is still poorly explored. Firstly, this study investigated the cytotoxic effects of Fx alone and combined with doxorubicin (Dox) and cisplatin (Cis) on a panel of 2D-cultured BC cell lines (MCF7, SKBR3 and MDA-MB-231) and one non-tumoral cell line (MCF12A). Fucoxanthin induced cytotoxicity against all the cell lines and potentiated Dox cytotoxic effects towards the SKBR3 and MDA-MB-231 cells. The combination triggering the highest cytotoxicity (Fx 10 µM + Dox 1 µM in MDA-MB-231) additionally showed significant induction of cell death and genotoxic effects, relative to control. In sequence, the same combination was tested on 3D cultures using a multi-endpoint approach involving bioactivity assays and microscopy techniques. Similar to 2D cultures, the combination of Fx and Dox showed higher cytotoxic effects on 3D cultures compared to the isolated compounds. Furthermore, this combination increased the number of apoptotic cells, decreased cell proliferation, and caused structural and ultrastructural damages on the 3D models. Overall, our findings suggest Fx has potential to become an adjuvant for Dox chemotherapy regimens in BC treatment.


2021 ◽  
Vol 14 (2) ◽  
pp. 107
Author(s):  
Nikola Pastvova ◽  
Petr Dolezel ◽  
Petr Mlejnek

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and has a poor prognosis. Complex genetic alterations and the protective effect of the blood–brain barrier (BBB) have so far hampered effective treatment. Here, we investigated the cytotoxic effects of heat shock protein 90 (HSP90) inhibitors, geldanamycin (GDN) and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), in a panel of glioma tumor cell lines with various genetic alterations. We also assessed the ability of the main drug transporters, ABCB1 and ABCG2, to efflux GDN and 17-AAG. We found that GDN and 17-AAG induced extensive cell death with the morphological and biochemical hallmarks of apoptosis in all studied glioma cell lines at sub-micro-molar and nanomolar concentrations. Moderate efflux efficacy of GDN and 17-AAG mediated by ABCB1 was observed. There was an insignificant and low efflux efficacy of GDN and 17-AAG mediated by ABCG2. Conclusion: GDN and 17-AAG, in particular, exhibited strong proapoptotic effects in glioma tumor cell lines irrespective of genetic alterations. GDN and 17-AAG appeared to be weak substrates of ABCB1 and ABCG2. Therefore, the BBB would compromise their cytotoxic effects only partially. We hypothesize that GBM patients may benefit from 17-AAG either as a single agent or in combination with other drugs.


2005 ◽  
Vol 16 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Hans U. V. Gerth ◽  
Annette Rompel ◽  
Bernt Krebs ◽  
Joachim Boos ◽  
Claudia Lanvers-Kaminsky

2017 ◽  
Vol 32 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Rogier Lange ◽  
Rob ter Heine ◽  
Wessel N. van Wieringen ◽  
Adrienne M. Tromp ◽  
Mayke Paap ◽  
...  

2007 ◽  
Vol 17 (13) ◽  
pp. 3676-3681 ◽  
Author(s):  
Carlos A. Sanhueza ◽  
Carlos Mayato ◽  
Rubén P. Machı´n ◽  
José M. Padrón ◽  
Rosa L. Dorta ◽  
...  

2011 ◽  
Vol 6 (12) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Maria del Rosario Jacobo-Salcedo ◽  
Angel Josabad Alonso-Castro ◽  
Luis A. Salazar-Olivo ◽  
Candy Carranza-Alvarez ◽  
Luis Ángel González-Espíndola ◽  
...  

The antimicrobial effects of the Mexican medicinal plants Guazuma ulmifolia, Justicia spicigera, Opuntia joconostle, O. leucotricha, Parkinsonia aculeata, Phoradendron longifolium, P. serotinum, Psittacanthus calyculatus, Tecoma stans and Teucrium cubense were tested against several human multi-drug resistant pathogens, including three Gram (+) and five Gram (-) bacterial species and three fungal species using the disk-diffusion assay. The cytotoxicity of plant extracts on human cancer cell lines and human normal non-cancerous cells was also evaluated using the MTT assay. Phoradendron longifolium, Teucrium cubense, Opuntia joconostle, Tecoma stans and Guazuma ulmifolia showed potent antimicrobial effects against at least one multidrug-resistant microorganism (inhibition zone > 15 mm). Only Justicia spicigera and Phoradendron serotinum extracts exerted active cytotoxic effects on human breast cancer cells (IC50≤30 μg/mL). The results showed that Guazuma ulmifolia produced potent antimicrobial effects against Candida albicans and Acinetobacter lwoffii, whereas Justicia spicigera and Phoradendron serotinum exerted the highest toxic effects on MCF-7 and HeLa, respectively, which are human cancer cell lines. These three plant species may be important sources of antimicrobial and cytotoxic agents.


Sign in / Sign up

Export Citation Format

Share Document