Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation

2014 ◽  
Vol 95 (13) ◽  
pp. 2742-2749 ◽  
Author(s):  
Mookiah Saminathan ◽  
Chin Chin Sieo ◽  
Norhani Abdullah ◽  
Clemente Michael Vui Ling Wong ◽  
Yin Wan Ho
2016 ◽  
Vol 96 (13) ◽  
pp. 4565-4574 ◽  
Author(s):  
Mookiah Saminathan ◽  
Chin Chin Sieo ◽  
Han Ming Gan ◽  
Sharanya Ravi ◽  
Karthikkumar Venkatachalam ◽  
...  

2016 ◽  
Vol 56 (3) ◽  
pp. 634 ◽  
Author(s):  
Abubeker Hassen ◽  
Jacobus Johannes Francois Theart ◽  
Willem Adriaan van Niekerk ◽  
Festus Adeyemi Adejoro ◽  
Belete Shenkute Gemeda

An in vitro gas production study was conducted to evaluate the potential of six browse species (high, medium and low condensed tannin concentrations) collected from the Kalahari Desert as antimethanogenic additives to an Eragrostis trichopophora-based substrate. The browse species studied were Acacia luederitzii, Monechma incanum, Acacia erioloba, Acacia haematoxylon, Olea europaea and Acacia mellifera. The edible forage dry matter of the browse species were incubated with Eragrostis trichopophora in a 30 : 70 (w/w) ratio by adding 40 mL of a buffered rumen fluid at 39°C for 48 h. Gas and methane production at different time intervals after incubation were determined whereas the volatile fatty acids concentration was evaluated after 48 h. Acacia luederitzii and M. incanum foliage decreased methane production by more than 50%, but simultaneously decreased digestibility, and rumen fermentation parameters such as volatile fatty acids concentration. Tannin extracts from A. luederitzii could possibly be used as a dietary alternative to reduce methane production; however, there is a need to determine an optimum level of inclusion that may not compromise the efficiency of rumen fermentation and overall digestibility of the diet.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2022 ◽  
Vol 10 (1) ◽  
pp. 1-9
Author(s):  
Aarón A. Molho-Ortiz ◽  
Atmir Romero-Pérez ◽  
Efrén Ramírez-Bribiesca ◽  
Claudia C. Márquez-Mota ◽  
Francisco A. Castrejón-Pineda ◽  
...  

2016 ◽  
Vol 56 (10) ◽  
pp. 1707 ◽  
Author(s):  
Brittany Pinski ◽  
Mevlüt Günal ◽  
Amer A. AbuGhazaleh

The potential of five different essential oils (EO) and quebracho condensed tannin extract (QCT) as antimethanogenic additives in ruminant feeds were investigated. The first experiment was conducted to screen the effects rosemary oil, sage oil, cinnamon oil (CNO), eucalyptus oil and myrrh oil at 500 mg/L of culture fluid on methane (CH4) production under in vitro conditions. Rumen contents were collected from a cannulated Holstein dairy cow and used for a 24-h batch-culture experiment. Treatments were a control (CON) or CON plus EO at 500 mg/L. Results showed that CNO decreased CH4 production and, therefore, was selected for Experiment 2. The second experiment was designed to test the effects of CNO at three different dose levels on CH4 production and fermentation in 24-h batch-culture experiments. Treatments were CON or CON plus CNO supplemented at 125, 250 and 500 mg/L. Relative to CON, CNO decreased total gas production at the 250 and 500 mg/L doses. All doses of CNO decreased CH4 production. Total volatile fatty acid production was lower in cultures incubated with CNO at the 500 mg/L. Ammonia-N concentration decreased in cultures incubated with CNO at the 500 mg/L. The third experiment was designed to test the effects of QCT on CH4 production and fermentation in 24-h batch cultures. Treatments were CON or CON plus QCT at 25, 50 and 75 g/kg of diet DM. Relative to CON, total volatile fatty acid concentration increased with the 50 g/kg QCT, but was similar to the 25 and 75 g/kg QCT. The proportions of acetate decreased, while the proportions of propionate increased with the 25 g/kg QCT compared with CON. Methane production was not affected in cultures incubated with QCT. Relative to CON, all doses of QCT decreased ammonia-N concentration. In conclusion, results from the present study showed that except for CNO, EO tested in the study had no effects on rumen CH4 production. Addition of CNO to rumen cultures at 125 and 250 mg/L reduced CH4 production without negative effects on rumen fermentation. Quebracho condensed tannin-extract supplementation had no effects on CH4 production and fermentation parameters except for ammonia-N concentration.


2017 ◽  
Vol 48 (2) ◽  
pp. 63-69
Author(s):  
M. Joch ◽  
V. Kudrna ◽  
B. Hučko

AbstractThe objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1) on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre). The ionophore antibiotic monensin (8 mg/l) was used as positive control. Compared to control, geraniol significantly (P < 0.05) reduced methane production with increasing doses, with reductions by 10.2, 66.9, and 97.9%. However, total volatile fatty acids (VFA) production and in vitro dry matter digestibility were also reduced (P < 0.05) by all doses of geraniol. Camphene demonstrated weak and unpromising effects on rumen fermentation. Camphene did not decrease (P > 0.05) methane production and slightly decreased (P < 0.05) VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.


Sign in / Sign up

Export Citation Format

Share Document