Cu(II)‐Metallacryptands Self‐Assembled to Vesicular Aggregates Capable of Encapsulating and Transporting an Anticancer Drug Inside Cancer Cells

2020 ◽  
Vol 20 (6) ◽  
pp. 2000044
Author(s):  
Protap Biswas ◽  
Koushik Sarkar ◽  
Parthasarathi Dastidar
Nanoscale ◽  
2018 ◽  
Vol 10 (19) ◽  
pp. 8969-8978 ◽  
Author(s):  
Yue Yu ◽  
Masahiro Nishikawa ◽  
Ming Liu ◽  
Takahiro Tei ◽  
Sunil C. Kaul ◽  
...  

Chemically functionalized nanodiamonds (NDs) were transformed into supraparticle (SP) nanoclusters via self-assembly. The ND–SP nanoclusters were biocompatible and internalized by cancer cells, and markedly enhanced anticancer drug efficacy compared to conventional nanomedicines.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ming Wang ◽  
Meiling Huang ◽  
Jianting Wang ◽  
Mingquan Ye ◽  
Yan Deng ◽  
...  

The self-assembled folate-biotin-pullulan (FBP) nanoparticles (NPs) were prepared by facile one-pot synthesis and their physicochemical properties were characterized. The self-assembled FBP NPs were used as an anticancer drug nanocarrier entrapping doxorubicin (DOX) for targeting folate-receptors-overexpressing cancer cells. The identification of prepared NPs to folate-receptor-expressing cancer cells (KB cells) was affirmed by cell viability measurement, folate competition test, and flow cytometric analysis. Compared with the naked DOX and DOX/BP NPs, the DOX/FBP NPs had lower IC50value compared to KB cells as a result of the folate-receptor-mediated endocytosis process. The cytotoxicity of DOX/FBP NPs to KB cells could be inhibited competitively by free folate. The cellular intake pattern of naked DOX and drug-loaded NPs was identified by confocal laser scanning microscopy (CLSM) observation and the higher cellular uptake of drug for DOX/FBP NPs over naked DOX was observed. The prepared FBP NPs had the potential to be used as a powerful carrier to target anticancer drugs to folate-receptor-expressing tumor cells and reduce cytotoxicity to normal tissues.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2924
Author(s):  
Cláudia Camacho ◽  
Helena Tomás ◽  
João Rodrigues

The DACHPtCl2 compound (trans-(R,R)-1,2-diaminocyclohexanedichloroplatinum(II)) is a potent anticancer drug with a broad spectrum of activity and is less toxic than oxaliplatin (trans-l-diaminocyclohexane oxalate platinum II), with which it shares the active metal fragment DACHPt. Nevertheless, due to poor water solubility, its use as a chemotherapeutic drug is limited. Here, DACHPtCl2 was conjugated, in a bidentate form, with half-generation PAMAM dendrimers (G0.5–G3.5) with carboxylate end-groups, and the resulting conjugates were evaluated against various types of cancer cell lines. In this way, we aimed at increasing the solubility and availability at the target site of DACHPt while potentially reducing the adverse side effects. DNA binding assays showed a hyperchromic effect compatible with DNA helix’s disruption upon the interaction of the metallodendrimers and/or the released active metallic fragments with DNA. Furthermore, the prepared DACHPt metallodendrimers presented cytotoxicity in a wide set of cancer cell lines used (the relative potency regarding oxaliplatin was in general high) and were not hemotoxic. Importantly, their selectivity for A2780 and CACO-2 cancer cells with respect to non-cancer cells was particularly high. Subsequently, the anticancer drug 5-FU was loaded in a selected metallodendrimer (the G2.5COO(DACHPt)16) to investigate a possible synergistic effect between the two drugs carried by the same dendrimer scaffold and tested for cytotoxicity in A2780cisR and CACO-2 cancer cell lines. This combination resulted in IC50 values much lower than the IC50 for 5-FU but higher than those found for the metallodendrimers without 5-FU. It seems, thus, that the metallic fragment-induced cytotoxicity dominates over the cytotoxicity of 5-FU in the set of considered cell lines.


2020 ◽  
Vol 861 ◽  
pp. 303-308
Author(s):  
Guo Li Gong ◽  
Zhi Qiang Liu

Sorangium cellulosum can product many secondary metabolites that is unique structural and makes these microorganisms highly attractive for drug development, especially epothilone, on cancer cells a cytotoxic macrolide which is naturally produced by Soxhlet cellulose that have the action of microtubule stabilization, is a promising anticancer drug. In this research, the factors affecting the regeneration and preparation of the protoplast of Sorangium cellulosum were discussed, those were regeneration media, enzymes and osmotic stabilizers. This study provide the distruction for improving the production of epothilone through genome shuffling, mutation, fusion and transformation.


2017 ◽  
Vol 9 (22) ◽  
pp. 18474-18481 ◽  
Author(s):  
Wei Zhao ◽  
Ji-Shi Wei ◽  
Peng Zhang ◽  
Jie Chen ◽  
Ji-Lie Kong ◽  
...  

2012 ◽  
Vol 315 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Till Krech ◽  
Elisa Scheuerer ◽  
Robert Geffers ◽  
Hans Kreipe ◽  
Ulrich Lehmann ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48433-48437 ◽  
Author(s):  
Krishnamoorthy Lalitha ◽  
Preethi Jenifer ◽  
Y. Siva Prasad ◽  
Kumarasamy Muthusamy ◽  
George John ◽  
...  

Herein, self-assembled π-conjugated systems derived from renewable resource are reported as a probe for intra-cellular imaging and an anti-proliferative agent for PC3 cells.


2018 ◽  
Vol 119 ◽  
pp. 1-9 ◽  
Author(s):  
Reza Karimi Shervedani ◽  
Hadiseh Mirhosseini ◽  
Marzieh Samiei Foroushani ◽  
Mostafa Torabi ◽  
Fatemeh Rahnemaye Rahsepar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document