Characterization of localized corrosion of heat treated Er‐ and Zr‐containing A356 alloys in 3.5 wt% NaCl aqueous solution

2018 ◽  
Vol 70 (2) ◽  
pp. 246-258 ◽  
Author(s):  
Marco Colombo ◽  
Ricardo H. Buzolin ◽  
Elisabetta Gariboldi ◽  
Rudolf Vallant ◽  
Christof Sommitsch
2012 ◽  
Vol 557-559 ◽  
pp. 1612-1617
Author(s):  
Jian An Liu ◽  
Xue Na Yang ◽  
Mei Mei Zhang ◽  
Wen He

The ferrimagnetic glass-ceramic based on SrO-Na2O-Fe2O3-FeO-P2O5-SiO2 system was prepared for hyperthermia application using aqueous aolution-melt method. Using the aqueous solution solvent evaporation, we obtained the molecular-scale homogenously glass precursor. The precursor was completely melted in a lidded platinum crucible placed in an electric furnace at 1480°C for 1h and then annealed in a furnace at 550°C for 40min.The annealed glasses were heat treated at 1050°C for 1h to obtain the glass-ceramics. The crystallization of the glass systems with different component has been systematically investigated by using XRD, TEM, as well as vibrating sample magnetometer (VSM). The glass-ceramics with P2O5=5.0wt% show a strong magnetic, which contains highest value of specific saturation magnetization of 24.89A•m2/kg.


2012 ◽  
Vol 581-582 ◽  
pp. 457-462
Author(s):  
Jian An Liu ◽  
Xue Na Yang ◽  
Mei Mei Zhang ◽  
Wen He

The ferrimagnetic glass-ceramic based on SrO-Na2O-Fe2O3-P2O5-SiO2 system was prepared for hyperthermia application using aqueous aolution-melt method. Using the aqueous solution solvent evaporation, we obtained the molecular-scale homogenously glass precursor. The precursor was completely melted in a lidded platinum crucible placed in an electric furnace at 1480°C for 1h and then annealed in a furnace at 550°C for 40min.The annealed glasses were heat treated at 1050°C for 2h to obtain the glass-ceramics. The crystallization of the glass systems with different component has been systematically investigated by using XRD. Room temperature magnetic property of the samples were investigated using a Vibrating Sample Magnetometer(VSM). The evolution of magnetic properties in these glasses as a function of P2O5 quality concentration was discussed.


Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


Author(s):  
Shozo Ikeda ◽  
Hirotoshi Hayakawa ◽  
Daniel R. Dietderich

Pb addition makes easier to form the high Tc phase in the BSCCO system. However, Pb easily vaporized at high temperature. A controlled Pb potential method has been applied to grow the high Tc phase in films. Initially, films are deposited on cleaved MgO substrates using an rf magnetron sputtering system. These amorphous as-deposited films are heat treated in a sealed gold capsule along with a large pellet of Pb-added BSCCO. Details of the process and characterization of the films have been reported elsewhere (1). Films trated for 0.5h at 850° C contain mainly the low Tc phase with a small amount of the high Tc phase. Hawever, films treated for 3h at 850°C consist mainly of the high Tc phase. This film is superconductive with a Tc(zero) of 106K. The Pb/Bi ratio of the films, analysed by SEM- EDS, are 0.12 and 0.18 for heat tratment times of 0.5 and 3h, respectively. The present study investigates the modulated structures of these films using HREM.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1132 ◽  
Author(s):  
Rejane M. P. da Silva ◽  
Javier Izquierdo ◽  
Mariana X. Milagre ◽  
Abenchara M. Betancor-Abreu ◽  
Isolda Costa ◽  
...  

Amperometric and potentiometric probes were employed for the detection and characterization of reactive sites on the 2098-T351 Al-alloy (AA2098-T351) using scanning electrochemical microscopy (SECM). Firstly, the probe of concept was performed on a model Mg-Al galvanic pair system using SECM in the amperometric and potentiometric operation modes, in order to address the responsiveness of the probes for the characterization of this galvanic pair system. Next, these sensing probes were employed to characterize the 2098-T351 alloy surface immersed in a saline aqueous solution at ambient temperature. The distribution of reactive sites and the local pH changes associated with severe localized corrosion (SLC) on the alloy surface were imaged and subsequently studied. Higher hydrogen evolution, lower oxygen depletion and acidification occurred at the SLC sites developed on the 2098-T351 Al-alloy.


Author(s):  
A. Brown ◽  
K. Krishnan ◽  
L. Wayne ◽  
P. Peralta ◽  
S. N. Luo ◽  
...  

Global and local microstructural weak links for spall damage were investigated using 3-D characterization in polycrystalline (PC) and multicrystalline (MC) copper samples, respectively. All samples were shocked via flyer-target plate experiments using a laser drive at low pressures (2–6 GPa). The flyer plates measured approximately 500 μm thick and 8 mm in diameter and the target plates measured approximately 1000 μm thick and 10 mm in diameter. Electron Backscattering Diffraction (EBSD) and optical microscopy were used to determine to presence of voids and relate them to the surrounding microstructure. Statistics on the strength of grain boundaries (GBs) was conducted by analyzing PC samples and collecting the misorientation across GBs with damage present, and it was found that a misorientation range of 25–50° is favorable for damage. Statistics were also taken of copper PC samples that had undergone different heat treatments and it was found that although the 25–50° range is less dominant, it is still favorable for damage nucleation. Removal of initial plastic strain via heat treatments and an increase in Σ3 CSL boundaries, indicative of strong annealing twins, also led to an increased amount of transgranular damage. 3-D X-ray tomography data were used to investigate the shape of the voids present in untreated, as received and heat treated samples. It was found that the as received sample contained a higher amount of “disk”, or, “sheet-like” voids indicative of intergranular damage, whereas the heat treated samples had a higher fraction of spherical shaped voids, indicative of transgranular damage. MC samples were used to study microstructural weak links for spall damage because the overall grain size is much larger than the average void size, making it possible to determine which GBs nucleated damage. Simulations and experimental analysis of damage sites with large volumes indicate that high Taylor factor mismatches with respect to the crystallographic grain GB normal is the primary cause for the nucleation of damage at a GB interface and a low Taylor factor along the shock direction in either grain drives void growth perpendicular to the GB. Cases where experimental results show damage and simulation results show no damage are attributed to the presence of an intrinsic microstructural weak link, such as an incoherent twin boundary.


2021 ◽  
Vol 212 ◽  
pp. 106222
Author(s):  
Balázs Zsirka ◽  
Veronika Vágvölgyi ◽  
Katalin Győrfi ◽  
Erzsébet Horváth ◽  
Róbert K. Szilágyi ◽  
...  

2012 ◽  
Vol 212 (6) ◽  
pp. 1324-1330 ◽  
Author(s):  
Pornnapa Kasemsiri ◽  
Salim Hiziroglu ◽  
Sarawut Rimdusit

2019 ◽  
Vol 943 ◽  
pp. 95-99
Author(s):  
Li Jun Wang ◽  
Kazuo Umemura

Optical absorption spectroscopy provides evidence for individually dispersed carbon nanotubes. A common method to disperse SWCNTs into aqueous solution is to sonicate the mixture in the presence of a double-stranded DNA (dsDNA). In this paper, optical characterization of dsDNA-wrapped HiPco carbon nanotubes (dsDNA-SWCNT) was carried out using near infrared (NIR) spectroscopy and photoluminescence (PL) experiments. The findings suggest that SWCNT dispersion is very good in the environment of DNA existing. Additionally, its dispersion depends on dsDNA concentration.


Sign in / Sign up

Export Citation Format

Share Document