Methotrexate Complexation with Native and PEGylated PAMAM-G4: Effect of the PEGylation Degree on the Drug Loading Capacity and Release Kinetics

2015 ◽  
Vol 217 (4) ◽  
pp. 605-613 ◽  
Author(s):  
Luis F. Barraza ◽  
Verónica A. Jiménez ◽  
Joel B. Alderete
2017 ◽  
Vol 23 (3) ◽  
pp. 467-480 ◽  
Author(s):  
Satyanarayan Pattnaik ◽  
Kamla Pathak

Background: Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Description: Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. Conclusion: This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed.


2019 ◽  
Vol 233 ◽  
pp. 230-235 ◽  
Author(s):  
Li-li Lu ◽  
Wen-ya Xiong ◽  
Jun-bin Ma ◽  
Tian-fang Gao ◽  
Si-yuan Peng ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Morteza Hasanzadeh Kafshgari ◽  
Delf Kah ◽  
Anca Mazare ◽  
Nhat Truong Nguyen ◽  
Monica Distaso ◽  
...  

Abstract Hollow titanium dioxide (TiO2) nanotubes offer substantially higher drug loading capacity and slower drug release kinetics compared to solid drug nanocarriers of comparable size. In this report, we load TiO2 nanotubes with iron oxide nanoparticles to facilitate site-specific magnetic guidance and drug delivery. We generate magnetic TiO2 nanotubes (TiO2NTs) by incorporating a ferrofluid containing Ø ≈ 10 nm iron oxide nanoparticles in planar sheets of weakly connected TiO2 nanotubes. After thermal annealing, the magnetic tubular arrays are loaded with therapeutic drugs and then sonicated to separate the nanotubes. We demonstrate that magnetic TiO2NTs are non-toxic for HeLa cells at therapeutic concentrations (≤200 µg/mL). Adhesion and endocytosis of magnetic nanotubes to a layer of HeLa cells are increased in the presence of a magnetic gradient field. As a proof-of-concept, we load the nanotubes with the topoisomerase inhibitor camptothecin and achieve a 90% killing efficiency. We also load the nanotubes with oligonucleotides for cell transfection and achieve 100% cellular uptake efficiency. Our results demonstrate the potential of magnetic TiO2NTs for a wide range of biomedical applications, including site-specific delivery of therapeutic drugs.


2021 ◽  
Author(s):  
Qandeel Zahra ◽  
Muhammad Usman Minhas ◽  
Samiullah Khan ◽  
Pao-Chu Wu ◽  
Muhammad Suhail ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Stefano Motta ◽  
Paulo Siani ◽  
Andrea Levy ◽  
Cristiana Di Valentin

Inorganic nanoparticles are gaining increasing attention as drug carriers because they respond to external physical stimuli, allowing to combine therapy with diagnosis. Their drawback is a low drug loading capacity,...


Author(s):  
Aiswarya Anilkumar Ajitha ◽  
Sri SivaKumar ◽  
Gayathri Viswanathan ◽  
Sabulal Baby ◽  
Prabath Gopalakrishnan Biju

Background: Over the last few decades, there has been a stupendous change in the area of drug delivery using particulate delivery systems, with increasing focus on nanoparticles in recent times. Nanoparticles helps to improve and alter the pharmacodynamic properties and pharmacokinetics of various types of drug molecules. These features help to protect the drug entity in the systemic circulation, access of the drug to the chosen sites, and to deliver the drug in a controlled and sustained rate at the site of action. Objective: Nanoparticle based targeted delivery of anti-inflammatory drugs/signal modulatory agents to the cytoplasm or nuclei of the targeted cell can significantly enhance the precision and efficacy of intended therapeutic activity. To this end, we report ligand free, enhanced intra-nuclear delivery model of anti-inflammatory therapeutics via PDMS nanoparticles. Method: PDMS nanoparticles were prepared by sacrificial silica template-based approach and details of their characterization for suitability as a nanoparticle-based delivery material is detailed herein. Results: Biological evaluation for compatibility was carried out and the results showed that the PDMS nanoparticle has no toxicity on RAW 264.7 cells in the concentration range of 10, 20, 40, 60, 80, 100 and 120 μg/mL in culture. Biocompatibility and absence of toxicity was determined by morphological examination and cell viability assays. Drug loading and release kinetics were carried out with the anti-inflammatory drug Diclofenac. Conclusion: In this paper we clearly demonstrate the various aspects of nanoparticle articulation, characterization, effect of their characteristics and their applications as a non-toxic drug delivery molecule for its potential applications in therapeutic delivery of drugs for sustained release.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 272 ◽  
Author(s):  
Patricia Diaz-Rodriguez ◽  
Mirian Sánchez ◽  
Mariana Landin

The mimesis of biological systems has been demonstrated to be an adequate approach to obtain tissue engineering scaffolds able to promote cell attachment, proliferation, and differentiation abilities similar to those of autologous tissues. Bioceramics are commonly used for this purpose due to their similarities to the mineral component of hard tissues as bone. Furthermore, biomimetic scaffolds are frequently loaded with diverse therapeutic molecules to enhance their biological performance, leading to final products with advanced functionalities. In this review, we aim to describe the already developed bioceramic-based biomimetic systems for drug loading and local controlled release. We will discuss the mechanisms used for the inclusion of therapeutic molecules on the designed systems, paying special attention to the identification of critical parameters that modulate drug loading and release kinetics on these scaffolds.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Monica Terracciano ◽  
Luca De Stefano ◽  
Ilaria Rea

Diatom microalgae are the most outstanding natural source of porous silica. The diatom cell is enclosed in a three-dimensional (3-D) ordered nanopatterned silica cell wall, called frustule. The unique properties of the diatom frustule, including high specific surface area, thermal stability, biocompatibility, and tailorable surface chemistry, make diatoms really promising for biomedical applications. Moreover, they are easy to cultivate in an artificial environment and there is a large availability of diatom frustules as fossil material (diatomite) in several areas of the world. For all these reasons, diatoms are an intriguing alternative to synthetic materials for the development of low-cost drug delivery systems. This review article focuses on the possible use of diatom-derived silica as drug carrier systems. The functionalization strategies of diatom micro/nanoparticles for improving their biophysical properties, such as cellular internalization and drug loading/release kinetics, are described. In addition, the realization of hybrid diatom-based devices with advanced properties for theranostics and targeted or augmented drug delivery applications is also discussed.


2018 ◽  
Vol 6 (11) ◽  
pp. 61-80 ◽  
Author(s):  
Shashank Soni ◽  
Veerma Ram ◽  
Anurag Verma

In the present experimental investigation an attempt has been made to assess the utility of Crushed Puffed Rice (CPR)-High Molecular Weight Chitosan (HMWCH)-Hydroxypropyl Methylcellulose K15M (HPMC K15M) as a polymeric carrier for the sustained stomach delivery of Piroxicam (PRX). A total of nine formulations were prepared by using 3 (2) Taguchi factorial design, physically blending drug and polymer(s) followed by encapsulation into hard gelatin capsules size 1. The prepared capsules were evaluated for various performance such as weight variation, drug contents, in vitro buoyancy and drug release in 0.1 M HCl. The effect of drug loading on in vitro performance of the formulations was also determined. Crushed puffed rice (CPR) remained buoyant for up to average time span of 06 hr as an unwetted irregular mass in 0.1 M HCl. However, when combined with HMWCH or HPMC K15M or HPMC K15M + HMWCH a low -density cylindrical raft type hydrogel was formed which remained buoyant for up to 12 hr and released up to 99% drug in a sustained manner from 8 to 12 hr following zero order release kinetics. It was also observed that drug release from drug + CPR matrices followed Fickian mechanism. Combination of CPR + HMWCH or HMWCH + HPMC K15M also follows Fickian mechanism. Obtained data from the research work suggests that CPR in combination with HMWCH or HPMC K15M or HPMC has sufficient potential to be used as a carrier for stomach specific delivery of gastric irritant drug like PRX.Soni et al., International Current Pharmaceutical Journal, April 2018, 6(11): 61-80http://www.icpjonline.com/documents/Vol6Issue11/01.pdf


Sign in / Sign up

Export Citation Format

Share Document