scholarly journals High‐frequency electrical properties tomography at 9.4T as a novel contrast mechanism for brain tumors

2021 ◽  
Vol 86 (1) ◽  
pp. 382-392
Author(s):  
Clémentine Lesbats ◽  
Nitish Katoch ◽  
Atul Singh Minhas ◽  
Arthur Taylor ◽  
Hyung Joong Kim ◽  
...  
Neurosurgery ◽  
1985 ◽  
Vol 17 (4) ◽  
pp. 613-619 ◽  
Author(s):  
Ken Nagata ◽  
Cordell E. Gross ◽  
Glenn W. Kindt ◽  
J. Michael Geier ◽  
Geoffrey R. Adey

Abstract A variant of electroencephalogram (EEG) power spectral mapping called power ratio index (PRI) mapping was used to monitor 15 patients with malignant brain tumors. This index is generated by dividing the low frequency (delta, theta) power by the high frequency (alpha, beta) power. Because the nonparoxysmal effect of a brain tumor on the EEG is reflected as a relative loss of high frequency power and a gain in low frequency power, utilization of the PRI has the effect of placing the epicenter of the “power dysfunction” coincident with the epicenter of the tumor.


1999 ◽  
Vol 572 ◽  
Author(s):  
Q. Zhang ◽  
V. Madangarli ◽  
I. Khlebnikov ◽  
S. Soloviev ◽  
T. S. Sudarshan

ABSTRACTThe electrical properties of thick oxide layers on n and p-type 6H-SiC obtained by a depoconversion technique are presented. High frequency capacitance-voltage measurements on MOS capacitors with a ∼ 3000 Å thick oxide indicates an effective charge density comparable to that of MOS capacitors with thermal oxide. The breakdown field of the depo-converted oxide obtained using a ramp response technique indicates a good quality oxide with average values in excess of 6 MV/cm on p-type SiC and 9 MV/cm on n-type SiC. The oxide breakdown field was observed to decrease with increase in MOS capacitor diameter.


1993 ◽  
Vol 303 ◽  
Author(s):  
Y. Ma ◽  
T. YAsuda ◽  
G. Lucovsky

ABSTRACTSiO2 thin films were deposited by remote PECVD on Si surfaces exposed to species generated in O2/N2 and O2/NH3 plasmas. The surface chemistry was studied by Auger Electron Spectroscopy, AES, and the electrical properties of the SiO2/Si interface by high frequency and quasi-static Capacitance-Voltage, C-V, measurements. The AES results showed that Ccontamination was removed by exposure to both plasma-excited gas mixtures, but that N-atoms were incorporated into the SiO2 film, and Si-N bonds were formed at the SiO2/Si interface. C-V measurements indicated that the Si-N bonding structure, rather than the N-atom concentration, is critical in determining the interface electrical properties. The effects of Rapid Thermal Annealing, RTA, on the electrical properties of these SiO2/Si interfaces were also studied.


Sign in / Sign up

Export Citation Format

Share Document