scholarly journals Functional nanoparticles in electrospun fibers for biomedical applications

Nano Select ◽  
2021 ◽  
Author(s):  
Qimanguli Saiding ◽  
Wenguo Cui
Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2896
Author(s):  
Sara Ferraris ◽  
Silvia Spriano ◽  
Alessandro Calogero Scalia ◽  
Andrea Cochis ◽  
Lia Rimondini ◽  
...  

Electrospinning is gaining increasing interest in the biomedical field as an eco-friendly and economic technique for production of random and oriented polymeric fibers. The aim of this review was to give an overview of electrospinning potentialities in the production of fibers for biomedical applications with a focus on the possibility to combine biomechanical and topographical stimuli. In fact, selection of the polymer and the eventual surface modification of the fibers allow selection of the proper chemical/biological signal to be administered to the cells. Moreover, a proper design of fiber orientation, dimension, and topography can give the opportunity to drive cell growth also from a spatial standpoint. At this purpose, the review contains a first introduction on potentialities of electrospinning for the obtainment of random and oriented fibers both with synthetic and natural polymers. The biological phenomena which can be guided and promoted by fibers composition and topography are in depth investigated and discussed in the second section of the paper. Finally, the recent strategies developed in the scientific community for the realization of electrospun fibers and for their surface modification for biomedical application are presented and discussed in the last section.


2016 ◽  
Vol 869 ◽  
pp. 930-934
Author(s):  
Cristiane Mayumi Wada ◽  
André Luiz Reis Rangel ◽  
Marisa Aparecida de Souza ◽  
Rosemeire dos Santos Almeida ◽  
Marcos Akira D’Ávila ◽  
...  

In this study, PCL electrospun fibers were deposited on the Ti-30Ta alloy for change the surface properties. Experimental Ti-30Ta alloy was obtained by melting titanium and tantalum in arc melting furnace with argon atmosphere. Ingots were homogenized and bars with 10 mm of diameter were obtained in rotative swagging. PCL fibers were deposited on disks of the alloy by electrospinning. Plasma treatment was carried out for change PCL electrospun superficial energy by using stainless steel plasma reactor. Samples were immersed in mineralization solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and mineralization. Results are very interesting for biomedical applications.


2016 ◽  
Vol 31 (6) ◽  
pp. 933-949 ◽  
Author(s):  
Hrishikesh R Munj ◽  
John J Lannutti ◽  
David L Tomasko

Electrospinning is one of the efficient processes to fabricate polymeric fibrous scaffolds for several biomedical applications. Several studies have published to demonstrate drug release from electrospun scaffolds. Blends of natural and synthetic electrospun fibers provide excellent platform to combine mechanical and bioactive properties. Drug release from polymer blends is a complex process. Drug release from polymer can be dominated by one or more of following mechanisms: polymer erosion, relaxation, and degradation. In this study, electrospun polycaprolactone (PCL)–gelatin blends are investigated to understand release mechanism of Rhodamine B dye. Also, this article summarizes the effect of high-pressure carbon dioxide on drug loading and release from PCL–gelatin fibers. Results indicate that release media diffusion is a dominant mechanism for PCL–gelatin electrospun fibers. Thickness of electrospun mat becomes critical for blends with gelatin. As gelatin is highly soluble in water and has tendency of gelation, it affects diffusion of release media in and out of scaffold. This article is a key step forward in understanding release from electrospun blends.


2020 ◽  
Vol 13 (05) ◽  
pp. 2030012 ◽  
Author(s):  
Zhimei Wei ◽  
Liqun Wang ◽  
Shouyu Zhang ◽  
Tonghai Chen ◽  
Jie Yang ◽  
...  

Bacterial infections are a major cause of chronic infections. Thus, antibacterial material is an urgent need in clinics. Antibacterial nanofibers, with expansive surface area, enable efficient incorporation of antibacterial agents. Meanwhile, structure similar to the extracellular matrix can accelerate cell growth. Electrospinning, the most widely used technique to fabricate nanofiber, is often used in many biomedical applications including drug delivery, regenerative medicine, wound healing and so on. Thus, this review provides an overview of all recently published studies on the development of electrospun antibacterial nanofibers in wound dressings and tissue medicinal fields. This reviewer begins with a brief introduction of electrospinning process and then discusses electrospun fibers by incorporating various types of antimicrobial agents used as in wound dressings and tissue. Finally, we finish with conclusions and further perspectives on electrospun antibacterial nanofibers as 2D biomedicine materials.


Nanoscale ◽  
2013 ◽  
Vol 5 (23) ◽  
pp. 11338 ◽  
Author(s):  
Nguyễn Thi Kim Thanh

2018 ◽  
Vol 759 ◽  
pp. 81-85
Author(s):  
Tongsai Jamnongkan ◽  
Supranee Kaewpirom ◽  
Amnuay Wattanakornsiri ◽  
Rattanaphol Mongkholrattanasit

Recently, the composited nanofiber attraction has been growing from researchers across the world due to its exciting opportunities for use in biomedical applications. In this study, we fabricated electrospun fibers from poly (vinyl alcohol) (PVA) composited with Zinc Oxide (ZnO) nanoparticle for potential use in biomedical applications. From the experimental results, there was not any chemical bonding between the ZnO nanoparticles and the PVA molecules. The effect of concentration of ZnO nanoparticles in PVA solution on the diameter of electrospun fibers was found that the diameter of electrospun fibers increased with raising the concentration of suspended ZnO nanoparticles in solution. This is probably because the effect of nanoparticles on the diameter of electrospun fibers was through their effect on the viscosity of solution. In addition, we found that the diameter of electrospun fibers depended on the solution and processing parameters.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 209-226 ◽  
Author(s):  
Junping Ma ◽  
Simon Ming-Yuen Lee ◽  
Changqing Yi ◽  
Cheuk-Wing Li

This review summarizes the development of microfluidic systems for engineering nanoparticles and their applications in imaging, biosensing, drug delivery and theranostics.


MRS Advances ◽  
2016 ◽  
Vol 1 (27) ◽  
pp. 1959-1964 ◽  
Author(s):  
Anupama Sargur Ranganath ◽  
V. Anand Ganesh ◽  
Kostiantyn Sopiha ◽  
Rahul Sahay ◽  
Avinash Baji

ABSTRACTPoly(N-isopropylacrylamide) (PNIPAM) has been used extensively for numerous biomedical applications. However, there is not enough information in the literature on the wettability and hygroscopic properties of electrospun PNIPAM fibers, relevant for water harvesting applications. This study focuses on investigating the wettability and hygroscopic properties of electrospun PNIPAM fibers at room temperature and elevated temperature. The wettability properties of electrospun PNIPAM fibers were compared to spin-coated PNIPAM thin films. The wettability properties of the electrospun fibers were enhanced by 56% compared to spin-coated films. Water contact angle (WCA) measured on electrospun fibers was determined to be 137° at elevated temperatures while WCA on spin cast PNIPAM film was determined to be 81° at elevated temperatures. Furthermore, hygroscopic properties of the electrospun PNIPAM fibers were studied using thermogravimetric analysis (TGA). The PNIPAM fibers are seen to exhibit moisture absorption capacity of about 16.6 wt. % under humid conditions.


2017 ◽  
Vol 5 (11) ◽  
pp. 2181-2189 ◽  
Author(s):  
M. Oster ◽  
G. Schlatter ◽  
S. Gallet ◽  
R. Baati ◽  
E. Pollet ◽  
...  

PCL fibers with pseudopolyrotaxanes at their surface are functionalized with bicyclononyne clickable groups making possible an easy bioconjugation in water and without copper catalysts for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document