Effect of ZnO Concentration on the Diameter of Electrospun Fibers from Poly(Vinyl Alcohol) Composited with ZnO Nanoparticles

2018 ◽  
Vol 759 ◽  
pp. 81-85
Author(s):  
Tongsai Jamnongkan ◽  
Supranee Kaewpirom ◽  
Amnuay Wattanakornsiri ◽  
Rattanaphol Mongkholrattanasit

Recently, the composited nanofiber attraction has been growing from researchers across the world due to its exciting opportunities for use in biomedical applications. In this study, we fabricated electrospun fibers from poly (vinyl alcohol) (PVA) composited with Zinc Oxide (ZnO) nanoparticle for potential use in biomedical applications. From the experimental results, there was not any chemical bonding between the ZnO nanoparticles and the PVA molecules. The effect of concentration of ZnO nanoparticles in PVA solution on the diameter of electrospun fibers was found that the diameter of electrospun fibers increased with raising the concentration of suspended ZnO nanoparticles in solution. This is probably because the effect of nanoparticles on the diameter of electrospun fibers was through their effect on the viscosity of solution. In addition, we found that the diameter of electrospun fibers depended on the solution and processing parameters.

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 900
Author(s):  
Maria Pardo-Figuerez ◽  
Alberto Chiva-Flor ◽  
Kelly Figueroa-Lopez ◽  
Cristina Prieto ◽  
Jose M. Lagaron

Electrospinning has been used to develop and upscale polyacrylonitrile (PAN) nanofibers as effective aerosol filtration materials for their potential use in respirators. The fibers were deposited onto non-woven spunbond polypropylene (SPP) and the basis weight (grammage, g/m2) was varied to assess the resulting effect on filtration efficiency and breathing resistance of the materials. The results indicated that a basis weight in excess of 0.4 g/m2 of PAN electrospun fibers yielded a filtration efficiency over 97%, with breathing resistance values that increased proportionally with the amount of basis weight added. With the aim of retaining filter efficiency whilst lowering breathing resistance, the basis weight of 0.4 g/m2 and 0.8 g/m2 of PAN electrospun fibers were strategically split up and stacked with SPP in different configurations. The results suggested that a symmetric structure based on SPP/PAN/PAN/SPP was the optimal structure, as it reduces SPP consumption while maintaining an FFP2-type of filtration efficiency, while reducing breathing resistance, specially at high air flow rates, such as those mimicking FFP2 exhalation conditions. The incorporation of zinc oxide (ZnO) nanoparticles within the electrospun nanofibers in the form of nanocomposites, retained the high filtration characteristics of the unfilled filter, while exhibiting a strong bactericidal capacity, even after short contact times. This study demonstrates the potential of using the symmetric splitting of the PAN nanofibers layer as a somewhat more efficient configuration in the design of filters for respirators.


2021 ◽  
Vol 56 (9) ◽  
pp. 5936-5955
Author(s):  
J. A. Benítez-Martínez ◽  
I. M. Garnica-Palafox ◽  
G. Vázquez-Victorio ◽  
M. Hautefeuille ◽  
F. M. Sánchez-Arévalo

2011 ◽  
Vol 20 (01) ◽  
pp. 183-194 ◽  
Author(s):  
SHAYLA SAWYER ◽  
LIQIAO QIN ◽  
CHRISTOPHER SHING

Zinc Oxide ( ZnO ) nanoparticles were created by a top-down wet-chemistry synthesis process ( ZnO - A ) and then coated with polyvinyl-alcohol (PVA) ( ZnO - U ). In ZnO - U , strong UV emission was apparent while the parasitic green emission, which normally appears in ZnO suspensions, was suppressed. A standard lift-off process via e-beam lithography was used to fabricate a detector by evaporating Aluminum ( Al ) as ohmic electrodes on the ZnO nanoparticle film. Photoconductivity experiments showed that linear current-voltage response were achieved and the ZnO - U nanoparticles based detector had a ratio of UV photo-generated current more than 5 times better than that of the ZnO - A based detector. In addition, non-linear current-voltage responses were observed when interdigitated finger Gold ( Au ) contacts were deposited on ZnO - U . The UV generated current to dark current ratios were between 4 and 7 orders of magnitude, showing better performance than the photodetector with Al contacts. ZnO - U were also deposited on Gallium Nitride ( GaN ) and Aluminum Gallium Nitride ( AlGaN ) substrates to create spectrally selective photodetectors. The responsivity of detector based on AlGaN is twice that of commercial UV enhanced Silicon photodiodes. These results confirmed that ZnO nanoparticles coating with PVA is a good material for small-signal, visible blind, and wavelength selective UV detection.


2013 ◽  
Vol 54 (9) ◽  
pp. 1969-1975 ◽  
Author(s):  
Tongsai Jamnongkan ◽  
Ryo Shirota ◽  
Sathish K. Sukumaran ◽  
Masataka Sugimoto ◽  
Kiyohito Koyama

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Huda AlFannakh

The behavior of polyvinyl chlorine (PVC)/zinc oxide (ZnO) nanoparticles was investigated. To improve the dispersion and distribution of zinc nanoparticles within the host polymer (PVC), they were treated with water before being added to the polymer. The nanocomposite samples were prepared by casting method using different weight ratios of ZnO nanoparticles. The prepared nanocomposite samples were characterized by thermogravimetric analysis (TGA). Both thermal stability and kinetic analysis of the prepared samples were investigated. The ZnO nanoparticles lower the activation energy and decrease the thermal stability of PVC. Kissinger, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose models were used in the nonisothermal kinetic analysis of PVC/ZnO nanocomposite samples. The thermal stability behavior due to the addition of zinc oxide nanoparticles was explained and correlated with the behavior of the kinetic parameters of the samples. The AC conductivity as function of frequency and temperature was also investigated. The addition of ZnO nanoparticle increases the AC conductivity, and the temperature-independent region decreased by increasing temperature. Both S and A coefficients were predicted using the Jonscher power law and OriginLab software. The trends of S and A coefficients were discussed based on the glass transition of the host polymer.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 922 ◽  
Author(s):  
Francesca Luzi ◽  
Alessandro Di Michele ◽  
Luigi Torre ◽  
Debora Puglia

Poly(vinyl alcohol-co-ethylene) (EVOH) films containing zinc oxide nanorods (ZnO Nrods) at 0.1, 0.5, and 1 wt%, were realized by solvent casting. The effect of ZnO Nrods content on morphological, thermal, optical, mechanical, and oxygen permeability properties were analyzed. In addition, moisture content and accelerated-aging test studies were performed, with the intention to determine the influence of zinc oxide nanofillers on the functional characteristics of realized packaging systems. Tensile properties showed increased values for strength and deformation-at-break in EVOH-based formulations reinforced with 0.1 and 0.5 wt% of zinc oxide nanorods. Results from the colorimetric and transparency investigations underlined that the presence of ZnO Nrods in EVOH copolymer did not induce evident alterations. In addition, after the accelerated-aging test, the colorimetric test confirmed the possibility for these materials to be used in the packaging sector. This behavior was induced by the presence of zinc oxide nanofillers that act as a UV block that made them useful as an efficient absorber of UV radiation.


Nano Letters ◽  
2012 ◽  
Vol 12 (11) ◽  
pp. 5840-5844 ◽  
Author(s):  
Dali Shao ◽  
Hongtao Sun ◽  
Mingpeng Yu ◽  
Jie Lian ◽  
Shayla Sawyer

Sign in / Sign up

Export Citation Format

Share Document