A Time‐Resolved Cryo‐EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source

PROTEOMICS ◽  
2020 ◽  
pp. 2000125
Author(s):  
Ming Sun ◽  
Bingxin Shen ◽  
Wen Li ◽  
Parimal Samir ◽  
Christopher M. Browne ◽  
...  
2020 ◽  
Vol 16 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Chandrika Kadkol ◽  
Ian Macreadie

Background: Tryptamine, a biogenic monoamine that is present in trace levels in the mammalian central nervous system, has probable roles as a neurotransmitter and/or a neuromodulator and may be associated with various neuropsychiatric disorders. One of the ways tryptamine may affect the body is by the competitive inhibition of the attachment of tryptophan to tryptophanyl tRNA synthetases. Methods: This study has explored the effects of tryptamine on growth of six yeast species (Saccharomyces cerevisiae, Candida glabrata, C. krusei, C. dubliniensis, C. tropicalis and C. lusitaniae) in media with glucose or ethanol as the carbon source, as well as recovery of growth inhibition by the addition of tryptophan. Results: Tryptamine was found to have an inhibitory effect on respiratory growth of all yeast species when grown with ethanol as the carbon source. Tryptamine also inhibited fermentative growth of Saccharomyces cerevisiae, C. krusei and C. tropicalis with glucose as the carbon source. In most cases the inhibitory effects were reduced by added tryptophan. Conclusion: The results obtained in this study are consistent with tryptamine competing with tryptophan to bind mitochondrial and cytoplasmic tryptophanyl tRNA synthetases in yeast: effects on mitochondrial and cytoplasmic protein synthesis can be studied as a function of growth with glucose or ethanol as a carbon source. Of the yeast species tested, there is variation in the sensitivity to tryptamine and the rescue by tryptophan. The current study suggests appropriate yeast strains and approaches for further studies.


1994 ◽  
Vol 269 (43) ◽  
pp. 27143-27148
Author(s):  
N B Dey ◽  
P Bounelis ◽  
T A Fritz ◽  
D M Bedwell ◽  
R B Marchase

1989 ◽  
Vol 9 (2) ◽  
pp. 442-451
Author(s):  
M Nishizawa ◽  
R Araki ◽  
Y Teranishi

To clarify carbon source-dependent control of the glycolytic pathway in the yeast Saccharomyces cerevisiae, we have initiated a study of transcriptional regulation of the pyruvate kinase gene (PYK). By deletion analysis of the 5'-noncoding region of the PYK gene, we have identified an upstream activating sequence (UASPYK1) located between 634 and 653 nucleotides upstream of the initiating ATG codon. The promoter activity of the PYK 5'-noncoding region was abolished when the sequence containing the UASPYK1 was deleted from the region. Synthetic UASPYK1 (26mer), in either orientation, was able to restore the transcriptional activity of UAS-depleted mutants when placed upstream of the TATA sequence located at -199 (ATG as +1). While the UASPYK1 was required for basal to intermediate levels of transcriptional activation, a sequence between -714 and -811 was found to be necessary for full activation. On the other hand, a sequence between -344 and -468 was found to be responsible for transcriptional repression of the PYK gene when yeast cells were grown on nonfermentable carbon sources. This upstream repressible sequence also repressed transcription, although to a lesser extent, when glucose was present in the medium. The possible mechanism for carbon source-dependent regulation of PYK expression through these cis-acting regulatory elements is discussed.


1986 ◽  
Vol 6 (6) ◽  
pp. 1936-1942
Author(s):  
K S Kim ◽  
M S Rosenkrantz ◽  
L Guarente

The tricarboxylic acid cycle occurs within the mitochondria of the yeast Saccharomyces cerevisiae. A nuclear gene encoding the tricarboxylic acid cycle enzyme citrate synthase has previously been isolated (M. Suissa, K. Suda, and G. Schatz, EMBO J. 3:1773-1781, 1984) and is referred to here as CIT1. We report here the isolation, by an immunological method, of a second nuclear gene encoding citrate synthase (CIT2). Disruption of both genes in the yeast genome was necessary to produce classical citrate synthase-deficient phenotypes: glutamate auxotrophy and poor growth on rich medium containing lactate, a nonfermentable carbon source. Therefore, the citrate synthase produced from either gene was sufficient for these metabolic roles. Transcription of both genes was maximally repressed in medium containing both glucose and glutamate. However, transcription of CIT1 but not of CIT2 was derepressed in medium containing a nonfermentable carbon source. The significance of the presence of two genes encoding citrate synthase in S. cerevisiae is discussed.


1978 ◽  
Vol 24 (6) ◽  
pp. 637-642 ◽  
Author(s):  
K. C. Thomas ◽  
Mary Spencer

Effects of the carbon source and oxygen on ethylene production by the yeast Saccharomyces cerevisiae have been studied. The amounts of ethylene evolved by the yeast culture were less than those detected in the blank (an equal volume of uninoculated medium), suggesting a net absorption of ethylene by the yeast cells. Addition of glucose to the lactate-grown yeast culture induced ethylene production. This glucose-induced stimulation of ethylene production was inhibited to a great extent by cycloheximide. Results suggested that the yeast cells in the presence of glucose synthesized an ethylene precursor and passed it into the medium. The conversion of this precursor to ethylene might be stimulated by oxygen. The fact that ethylene was produced by the yeast growing anaerobically and also by respiration-deficient mutants isolated from the wild-type yeast suggested that mitochondrial ATP synthesis was not an absolute requirement for ethylene biogenesis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Marlous van Dijk ◽  
Peter Rugbjerg ◽  
Yvonne Nygård ◽  
Lisbeth Olsson

Abstract Background The limited tolerance of Saccharomyces cerevisiae to inhibitors is a major challenge in second-generation bioethanol production, and our understanding of the molecular mechanisms providing tolerance to inhibitor-rich lignocellulosic hydrolysates is incomplete. Short-term adaptation of the yeast in the presence of dilute hydrolysate can improve its robustness and productivity during subsequent fermentation. Results We utilized RNA sequencing to investigate differential gene expression in the industrial yeast strain CR01 during short-term adaptation, mimicking industrial conditions for cell propagation. In this first transcriptomic study of short-term adaption of S. cerevisiae to lignocellulosic hydrolysate, we found that cultures respond by fine-tuned up- and down-regulation of a subset of general stress response genes. Furthermore, time-resolved RNA sequencing allowed for identification of genes that were differentially expressed at 2 or more sampling points, revealing the importance of oxidative stress response, thiamin and biotin biosynthesis. furan-aldehyde reductases and specific drug:H+ antiporters, as well as the down-regulation of certain transporter genes. Conclusions These findings provide a better understanding of the molecular mechanisms governing short-term adaptation of S. cerevisiae to lignocellulosic hydrolysate, and suggest new genetic targets for improving fermentation robustness.


1995 ◽  
Vol 15 (4) ◽  
pp. 1915-1922 ◽  
Author(s):  
D Hedges ◽  
M Proft ◽  
K D Entian

The expression of gluconeogenic fructose-1,6-bisphosphatase (encoded by the FBP1 gene) depends on the carbon source. Analysis of the FBP1 promoter revealed two upstream activating elements, UAS1FBP1 and UAS2FBP1, which confer carbon source-dependent regulation on a heterologous reporter gene. On glucose media neither element was activated, whereas after transfer to ethanol a 100-fold derepression was observed. This gene activation depended on the previously identified derepression genes CAT1 (SNF1) (encoding a protein kinase) and CAT3 (SNF4) (probably encoding a subunit of Cat1p [Snf1p]). Screening for mutations specifically involved in UAS1FBP1 derepression revealed the new recessive derepression mutation cat8. The cat8 mutants also failed to derepress UAS2FBP1, and these mutants were unable to grow on nonfermentable carbon sources. The CAT8 gene encodes a zinc cluster protein related to Saccharomyces cerevisiae Gal4p. Deletion of CAT8 caused a defect in glucose derepression which affected all key gluconeogenic enzymes. Derepression of glucose-repressible invertase and maltase was still normally regulated. A CAT8-lacZ promoter fusion revealed that the CAT8 gene itself is repressed by Cat4p (Mig1p). These results suggest that gluconeogenic genes are derepressed upon binding of Cat8p, whose synthesis depends on the release of Cat4p (Mig1p) from the CAT8 promoter. However, gluconeogenic promoters are still glucose repressed in cat4 mutants, which indicates that in addition to its transcription, the Cat8p protein needs further activation. The observation that multicopy expression of CAT8 reverses the inability of cat1 and cat3 mutants to grow on ethanol indicates that Cat8p might be the substrate of the Cat1p/Cat3p protein kinase.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Andy Hesketh ◽  
Marta Vergnano ◽  
Stephen G. Oliver

ABSTRACT Correlations between gene transcription and the abundance of high-energy purine nucleotides in Saccharomyces cerevisiae have often been noted. However, there has been no systematic investigation of this phenomenon in the absence of confounding factors such as nutrient status and growth rate, and there is little hard evidence for a causal relationship. Whether transcription is fundamentally responsive to prevailing cellular energetic conditions via sensing of intracellular purine nucleotides, independently of specific nutrition, remains an important question. The controlled nutritional environment of chemostat culture revealed a strong correlation between ATP and GTP abundance and the transcription of genes required for growth. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into S. cerevisiae, permitting analysis of the transcriptional effect of an increased demand for these nucleotides. During steady-state growth using the fermentable carbon source glucose, the futile consumption of ATP led to a decrease in intracellular ATP concentration but an increase in GTP and the guanylate energy charge (GEC). Expression of transcripts encoding proteins involved in ribosome biogenesis, and those controlled by promoters subject to SWI/SNF-dependent chromatin remodelling, was correlated with these nucleotide pool changes. Similar nucleotide abundance changes were observed using a nonfermentable carbon source, but an effect on the growth-associated transcriptional programme was absent. Induction of the GTP-cycling pathway had only marginal effects on nucleotide abundance and gene transcription. The transcriptional response of respiring cells to glucose was dampened in chemostats induced for ATP cycling, but not GTP cycling, and this was primarily associated with altered adenine nucleotide levels. IMPORTANCE This paper investigates whether, independently of the supply of any specific nutrient, gene transcription responds to the energy status of the cell by monitoring ATP and GTP levels. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into the yeast Saccharomyces cerevisiae, and the effect of an increased demand for these purine nucleotides on gene transcription was analyzed. The resulting changes in transcription were most consistently associated with changes in GTP and GEC levels, although the reprogramming in gene expression during glucose repression is sensitive to adenine nucleotide levels. The results show that GTP levels play a central role in determining how genes act to respond to changes in energy supply and that any comprehensive understanding of the control of eukaryotic gene expression requires the elucidation of how changes in guanine nucleotide abundance are sensed and transduced to alter the global pattern of transcription.


Sign in / Sign up

Export Citation Format

Share Document