scholarly journals Transmembrane β‐peptide helices as molecular rulers at the membrane surface

2021 ◽  
Author(s):  
Martin Kloos ◽  
Akshita Sharma ◽  
Jörg Enderlein ◽  
Ulf Diederichsen

Author(s):  
Hideo Hayashi ◽  
Yoshikazu Hirai ◽  
John T. Penniston

Spectrin is a membrane associated protein most of which properties have been tentatively elucidated. A main role of the protein has been assumed to give a supporting structure to inside of the membrane. As reported previously, however, the isolated spectrin molecule underwent self assemble to form such as fibrous, meshwork, dispersed or aggregated arrangements depending upon the buffer suspended and was suggested to play an active role in the membrane conformational changes. In this study, the role of spectrin and actin was examined in terms of the molecular arrangements on the erythrocyte membrane surface with correlation to the functional states of the ghosts.Human erythrocyte ghosts were prepared from either freshly drawn or stocked bank blood by the method of Dodge et al with a slight modification as described before. Anti-spectrin antibody was raised against rabbit by injection of purified spectrin and partially purified.



Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

Protein kinase C (PKC) isozymes, when activated, are translocated to particulate membrane fractions for transport to the apical membrane surface in a variety of cell types. Evidence of PKC translocation was demonstrated in human megakaryoblastic leukemic cells, and in cardiac myocytes and fibroblasts, using FTTC immunofluorescent antibody labeling techniques. Recently, we reported immunogold localizations of PKC subtypes I and II in toad urinary bladder epithelia, following 60 min stimulation with Mezerein (MZ), a PKC activator, or antidiuretic hormone (ADH). Localization of isozyme subtypes I and n was carried out in separate grids using specific monoclonal antibodies with subsequent labeling with 20nm protein A-gold probes. Each PKC subtype was found to be distributed singularly and in discrete isolated patches in the cytosol as well as in the apical membrane domains. To determine if the PKC isozymes co-localized within the cell, a double immunogold labeling technique using single grids was utilized.



Author(s):  
R.T. Chen ◽  
M.G. Jamieson ◽  
R. Callahan

“Row lamellar” structures have previously been observed when highly crystalline polymers are melt-extruded and recrystallized under high stress. With annealing to perfect the stacked lamellar superstructure and subsequent stretching in the machine (extrusion) direction, slit-like micropores form between the stacked lamellae. This process has been adopted to produce polymeric membranes on a commercial scale with controlled microporous structures. In order to produce the desired pore morphology, row lamellar structures must be established in the membrane precursors, i.e., as-extruded and annealed polymer films or hollow fibers. Due to the lack of pronounced surface topography, the lamellar structures have typically been investigated by replica-TEM, an indirect and time consuming procedure. Recently, with the availability of high resolution imaging techniques such as scanning tunneling microscopy (STM) and field emission scanning electron microscopy (FESEM), the microporous structures on the membrane surface as well as lamellar structures in the precursors can be directly examined.The materials investigated are Celgard® polyethylene (PE) flat sheet membranes and their film precursors, both as-extruded and annealed, made at different extrusion rates (E.R.).



Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.



2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>





Author(s):  
Thomas L. Davies ◽  
Tami F. Wall ◽  
Allan Carpentier

After examination of the research carried out by other agencies, Saskatchewan Highways and Transportation (SHT) embarked on an initiative to adapt low tire pressure technologies to the province's needs and environment. The focus of the initiative was to explore several technical questions from SHT's perspective: (a) Can low tire pressures be used to increase truck weights from secondary to primary without increasing road maintenance costs on thin membrane surface roads? (b) What are the short- and long-term effects of tire heating under high-speed/high-deflection constant reduced pressure (CRP) operations in a Saskatchewan environment? (c) What effects do lower tire pressures have on vehicle stability at highway speeds? To date, significant opportunities have been noted on local hauls (less than 30 min loaded at highway speeds) for CRP operation and long primary highway hauls that begin or end in relatively short secondary highway sections that limit vehicle weight allowed for the whole trip for central tire inflation technology. The background and environment for the initiative and the investigations and demonstrations envisioned and undertaken are briefly outlined.



2017 ◽  
Vol 68 (6) ◽  
pp. 1302-1305
Author(s):  
Ali A. A. Al Janabi ◽  
Oana Cristina Parvulescu ◽  
Bogdan Trica ◽  
Tanase Dobre

The paper aimed at studying the performances of pervaporation separation of isopropanol-water system using a Pervatech ceramic membrane at various values of feed mixture flow rate (F=1000 kg/hr), feed water mass fraction (xF=0.1-0.2), operation temperature (t=60-90 �C), permeate pressure (pP=1000-9000 Pa) and water separation degree (sW=0.9, 0.95). Membrane total flux and separation factor were predicted applying a second order response surface model with 3 factors, i.e., xF, t and pP. An algorithm for estimating the membrane surface area was presented. Membrane area increased with sW and xF and its lowest values (A=13 m2 for xF=0.1 and A=24 m2 for xF=0.2) were attained for t=60 �C and pP=9000 Pa. These findings could be applied for optimizing the process of isopropanol dehydration by pervaporation.



2005 ◽  
Vol 5 (5) ◽  
pp. 1-8 ◽  
Author(s):  
K.Y. Choi ◽  
B.A. Dempsey

The objective of the research was to evaluate in-line coagulation to improve performance during ultrafiltration (UF). In-line coagulation means use of coagulants without removal of coagulated solids prior to UF. Performance was evaluated by removal of contaminants (water quality) and by resistance to filtration and recovery of flux after hydraulic or chemical cleaning (water production). We hypothesized that coagulation conditions inappropriate for conventional treatment, in particular under-dosing conditions that produce particles that neither settle nor are removed in rapid sand filters, would be effective for in-line coagulation prior to UF. A variety of pre-treatment processes for UF have been investigated including coagulation, powdered activated carbon (PAC) or granular activated carbon (GAC), adsorption on iron oxides or other pre-formed settleable solid phases, or ozonation. Coagulation pre-treatment is often used for removal of fouling substances prior to NF or RO. It has been reported that effective conventional coagulation conditions produced larger particles and this reduced fouling during membrane filtration by reducing adsorption in membrane pores, increasing cake porosity, and increasing transport of foulants away from the membrane surface. However, aggregates produced under sweep floc conditions were more compressible than for charge neutralization conditions, resulting in compaction when the membrane filtration system was pressurized. It was known that the coagulated suspension under either charge-neutralization or sweep floc condition showed similar steady-state flux under the cross-flow microfiltration mode. Another report on the concept of critical floc size suggested that flocs need to reach a certain critical size before MF, otherwise membranes can be irreversibly clogged by the coagulant solids. The authors were motivated to study the effect of various coagulation conditions on the performance of a membrane filtration system.



2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.



Sign in / Sign up

Export Citation Format

Share Document