Possible formation mechanisms for surface defects observed in heteroepitaxially grown 3C-SiC

2007 ◽  
Vol 204 (7) ◽  
pp. 2216-2221 ◽  
Author(s):  
K. M. Speer ◽  
P. G. Neudeck ◽  
M. A. Crimp ◽  
C. Burda ◽  
P. Pirouz
2014 ◽  
Vol 622-623 ◽  
pp. 659-663 ◽  
Author(s):  
Fabio Bassan ◽  
Paolo Ferro ◽  
Franco Bonollo

In this work, the formation mechanisms of surface defects in multistage cold forging of axisymmetrical parts have been studied through FEM simulations. As case history, the industrial production of an heating pipe fitting by cold forging has been analyzed. Based on simulated flow behaviour of material, several types of surface defects are identified and attributed to plastic instability of the work-material, inappropriate axial/radial flow ratio, excessive forming-pressure and uncorrect tooling design. The results of the FE model are finally compared with those obtained from real forging process and good agreement is observed.


2006 ◽  
Vol 527-529 ◽  
pp. 339-342 ◽  
Author(s):  
Takuro Tomita ◽  
Shigeki Matsuo ◽  
Tatsuya Okada ◽  
Tsunenobu Kimoto ◽  
Takeshi Mitani ◽  
...  

Deep-ultraviolet (DUV) micro-Raman spectroscopy was applied to study the micro structures of surface defects in a 4H-SiC homoepitaxially grown film. From DUV Raman spectrum, inclusions of 3C-SiC was found in comet defects. The shape of 3C-structure in comets was investigated and it was found that 3C inclusions in comets can be classified into two types. In addition, spectrum broadening due to the coupling of nonfolded longitudinal optical phonon mode and the photo-excited carriers was also found. The formation mechanisms of 3C inclusion in comets were discussed.


2017 ◽  
Vol 898 ◽  
pp. 1183-1189
Author(s):  
Wei Yu Wu ◽  
Xue Feng Liu ◽  
Feng Yi

Copper clad steel (CCS) composite wires with the carbon steel core diameter of 8 mm and copper cladding thickness of 1 mm were prepared by core-cladding continuous casting method under argon protection. The effects of melt temperature, molten metal height and drawing velocity on the surface quality were investigated. The formation mechanisms of the surface defects were discussed. The results showed that CCS wires with good surface quality could be continuously fabricated at a melt temperature of 1120 to 1200°C, a molten metal height of 2 to 4 cm and a drawing velocity of 10 to 30 mm/min. Raising the melt temperature, increasing the molten metal height or decreasing the drawing velocity is in favor of improvements in the surface quality. Insufficient supplement of liquid copper during solidification shrinkage resulted in surface dimple. Transverse hot cracking and exposed steel defect appeared because the frictional force between cladding metal and mold was larger than the tensile strength of cladding metal under high temperature.


2000 ◽  
Vol 125 (1-3) ◽  
pp. 111-115 ◽  
Author(s):  
H.-A. Durand ◽  
K. Sekine ◽  
K. Etoh ◽  
K. Ito ◽  
I. Kataoka

Author(s):  
B. Cunningham ◽  
D.G. Ast

There have Been a number of studies of low-angle, θ < 4°, [10] tilt boundaries in the diamond lattice. Dislocations with Burgers vectors a/2<110>, a/2<112>, a<111> and a<001> have been reported in melt-grown bicrystals of germanium, and dislocations with Burgers vectors a<001> and a/2<112> have been reported in hot-pressed bicrystals of silicon. Most of the dislocations were found to be dissociated, the dissociation widths being dependent on the tilt angle. Possible dissociation schemes and formation mechanisms for the a<001> and a<111> dislocations from the interaction of lattice dislocations have recently been given.The present study reports on the dislocation structure of a 10° [10] tilt boundary in chemically vapor deposited silicon. The dislocations in the boundary were spaced about 1-3nm apart, making them difficult to resolve by conventional diffraction contrast techniques. The dislocation structure was therefore studied by the lattice-fringe imaging technique.


Author(s):  
Eal H. Lee ◽  
Helmut Poppa

The formation of thin films of gold on mica has been studied in ultra-high vacuum (5xl0-10 torr) . The mica substrates were heat-treated for 24 hours at 375°C, cleaved, and annealed for 15 minutes at the deposition temperature of 300°C prior to deposition. An impingement flux of 3x1013 atoms cm-2 sec-1 was used. These conditions were found to give high number densities of multiple twin particles and are based on a systematic series of nucleation experiments described elsewhere. Individual deposits of varying deposition time were made and examined by bright and dark field TEM after "cleavage preparation" of highly transparent specimens. In the early stages of growth, the films generally consist of small particles which are either single crystals or multiply twinned; a strong preference for multiply twinned particles was found whenever the particle number densities were high. Fig. 1 shows the stable cluster density ns and the variation with deposition time of multiple twin particle and single crystal particle densities, respectively. Corresponding micrographs and diffraction patterns are shown in Fig. 2.


Author(s):  
Kenneth R. Lawless

One of the most important applications of the electron microscope in recent years has been to the observation of defects in crystals. Replica techniques have been widely utilized for many years for the observation of surface defects, but more recently the most striking use of the electron microscope has been for the direct observation of internal defects in crystals, utilizing the transmission of electrons through thin samples.Defects in crystals may be classified basically as point defects, line defects, and planar defects, all of which play an important role in determining the physical or chemical properties of a material. Point defects are of two types, either vacancies where individual atoms are missing from lattice sites, or interstitials where an atom is situated in between normal lattice sites. The so-called point defects most commonly observed are actually aggregates of either vacancies or interstitials. Details of crystal defects of this type are considered in the special session on “Irradiation Effects in Materials” and will not be considered in detail in this session.


Author(s):  
D.P. Malta ◽  
S.A. Willard ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
J.B. Posthill ◽  
...  

Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. A major goal of current device-related diamond research is to achieve a high quality epitaxial film on an inexpensive, readily available, non-native substrate. One step in the process of achieving this goal is understanding the nucleation and growth processes of diamond films on diamond substrates. Electron microscopy has already proven invaluable for assessing polycrystalline diamond films grown on nonnative surfaces.The quality of the grown diamond film depends on several factors, one of which is the quality of the diamond substrate. Substrates commercially available today have often been found to have scratched surfaces resulting from the polishing process (Fig. 1a). Electron beam-induced current (EBIC) imaging shows that electrically active sub-surface defects can be present to a large degree (Fig. 1c). Growth of homoepitaxial diamond films by rf plasma-enhanced chemical vapor deposition (PECVD) has been found to planarize the scratched substrate surface (Fig. 1b).


Author(s):  
S. Yegnasubramanian ◽  
V.C. Kannan ◽  
R. Dutto ◽  
P.J. Sakach

Recent developments in the fabrication of high performance GaAs devices impose crucial requirements of low resistance ohmic contacts with excellent contact properties such as, thermal stability, contact resistivity, contact depth, Schottky barrier height etc. The nature of the interface plays an important role in the stability of the contacts due to problems associated with interdiffusion and compound formation at the interface during device fabrication. Contacts of pure metal thin films on GaAs are not desirable due to the presence of the native oxide and surface defects at the interface. Nickel has been used as a contact metal on GaAs and has been found to be reactive at low temperatures. Formation Of Ni2 GaAs at 200 - 350C is reported and is found to grow epitaxially on (001) and on (111) GaAs, but is shown to be unstable at 450C. This paper reports the investigations carried out to understand the microstructure, nature of the interface and composition of sputter deposited and annealed (at different temperatures) Ni-Sb ohmic contacts on GaAs by TEM. Attempts were made to correlate the electrical properties of the films such as the sheet resistance and contact resistance, with the microstructure. The observations are corroborated by Scanning Auger Microprobe (SAM) investigations.


Sign in / Sign up

Export Citation Format

Share Document