Electrical Activation of Interstitial Ni in Cu‐doped Si

Author(s):  
Nikolai Yarykin ◽  
Jörg Weber
2019 ◽  
Vol 11 (483) ◽  
pp. eaau1428 ◽  
Author(s):  
Wenjie Wu ◽  
Hui Wang ◽  
Peinan Zhao ◽  
Michael Talcott ◽  
Shengsheng Lai ◽  
...  

In current clinical practice, uterine contractions are monitored via a tocodynamometer or an intrauterine pressure catheter, both of which provide crude information about contractions. Although electrohysterography/electromyography can measure uterine electrical activity, this method lacks spatial specificity and thus cannot accurately measure the exact location of electrical initiation and location-specific propagation patterns of uterine contractions. To comprehensively evaluate three-dimensional uterine electrical activation patterns, we describe here the development of electromyometrial imaging (EMMI) to display the three-dimensional uterine contractions at high spatial and temporal resolution. EMMI combines detailed body surface electrical recording with body-uterus geometry derived from magnetic resonance images. We used a sheep model to show that EMMI can reconstruct uterine electrical activation patterns from electrodes placed on the abdomen. These patterns closely match those measured with electrodes placed directly on the uterine surface. In addition, modeling experiments showed that EMMI reconstructions are minimally affected by noise and geometrical deformation. Last, we show that EMMI can be used to noninvasively measure uterine contractions in sheep in the same setup as would be used in humans. Our results indicate that EMMI can noninvasively, safely, accurately, robustly, and feasibly image three-dimensional uterine electrical activation during contractions in sheep and suggest that similar results might be obtained in clinical setting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pavel Jurak ◽  
Laura R. Bear ◽  
Uyên Châu Nguyên ◽  
Ivo Viscor ◽  
Petr Andrla ◽  
...  

AbstractThe study introduces and validates a novel high-frequency (100–400 Hz bandwidth, 2 kHz sampling frequency) electrocardiographic imaging (HFECGI) technique that measures intramural ventricular electrical activation. Ex-vivo experiments and clinical measurements were employed. Ex-vivo, two pig hearts were suspended in a human-torso shaped tank using surface tank electrodes, epicardial electrode sock, and plunge electrodes. We compared conventional epicardial electrocardiographic imaging (ECGI) with intramural activation by HFECGI and verified with sock and plunge electrodes. Clinical importance of HFECGI measurements was performed on 14 patients with variable conduction abnormalities. From 3 × 4 needle and 108 sock electrodes, 256 torso or 184 body surface electrodes records, transmural activation times, sock epicardial activation times, ECGI-derived activation times, and high-frequency activation times were computed. The ex-vivo transmural measurements showed that HFECGI measures intramural electrical activation, and ECGI-HFECGI activation times differences indicate endo-to-epi or epi-to-endo conduction direction. HFECGI-derived volumetric dyssynchrony was significantly lower than epicardial ECGI dyssynchrony. HFECGI dyssynchrony was able to distinguish between intraventricular conduction disturbance and bundle branch block patients.


2007 ◽  
Vol 40 (17) ◽  
pp. 5227-5231 ◽  
Author(s):  
R M de Oliveira ◽  
M Dalponte ◽  
H Boudinov

1980 ◽  
Vol 1 ◽  
Author(s):  
T. O. Yep ◽  
R. T. Fulks ◽  
R. A. Powell

ABSTRACTSuccessful annealing of p+ n arrays fabricated by ion-implantation of 11B (50 keV, 1 × 1014 cm-2) into Si (100 has been performed using a broadly rastered, low-resolution (0.25-inch diameter) electron beam. A complete 2" wafer could be uniformly annealed in ≃20 sec with high electrical activation (>75%) and small dopant redistribution (≃450 Å). Annealing resulted In p+n junctions characterized by low reverse current (≃4 nAcm-2 at 5V reverse bias) and higher carrier lifetime (80 μsec) over the entire 2" wafer. Based on the electrical characteristics of the diodes, we estimate that the electron beam anneal was able to remove ion implantation damage and leave an ordered substrate to a depth of 5.5 m below the layer junction.


2012 ◽  
Vol 5 (2) ◽  
pp. 021301 ◽  
Author(s):  
Giuliana Impellizzeri ◽  
Enrico Napolitani ◽  
Simona Boninelli ◽  
Vittorio Privitera ◽  
Trudo Clarysse ◽  
...  

2012 ◽  
Vol 711 ◽  
pp. 213-217 ◽  
Author(s):  
Anne Elisabeth Bazin ◽  
Frédéric Cayrel ◽  
Mohamed Lamhamdi ◽  
Arnaud Yvon ◽  
Jean Christophe Houdbert ◽  
...  

In this paper, we evaluated gallium nitride heteroepitaxially grown on sapphire (GaN/Sa) and grown on silicon (GaN/Si) faced to implantation doping. Si+ was implanted on low doped n-type epilayers in order to create a plateau around 1020at.cm-3. All the samples were capped with a silicon oxide and annealed between 1000°C and 1150°C. The surface quality was evaluated in terms of roughness, pit density and maximum pit diameter using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Finally, the dopant electrical activation was studied with Ti-Al contacts using the circular Transfert Length Method (c-TLM). This study shows that low Specific Contact Resistance (SCR) values of 8x10-5Ω.cm2 and 6x10-6Ω.cm2 are respectively obtained on GaN/Sa sample annealed at 1150°C-2min and on GaN/Si sample annealed at 1150°C-30s, proving that good ohmic contacts are obtained on both materials. Nevertheless, a compromise has to be done between the low SCR values obtained and the GaN surface degradation, observed by AFM and SEM after the different annealing treatments and which could affect the good behaviour of the GaN devices.


Sign in / Sign up

Export Citation Format

Share Document