scholarly journals Elastic Properties of Cold-Rolled and Annealed Sheets of Phosphorus Steel Having High Normal Plastic anisotropy

1980 ◽  
Vol 4 (2) ◽  
pp. 111-127 ◽  
Author(s):  
Hsun Hu

The elastic properties of as-cold-rolled and of the subsequently annealed sheets of a phosphorus steel having high normal plastic anisotropy and low planar plastic anisotropy have been calculated according to the averaging procedures of Voigt, Reuss, and Hill incorporated with texture-weighting functions. The calculated values of Young's modulus in the various directtions lying in the plane of the sheet were compared with those determined experimentally by ultrasonic measurements. Results indicate that the Hill averages are very close to reality, whereas the Voigt and Reuss averages are somewhat too high and too low, respectively, in comparison with experimentally measured values. This paper has been prepared to help familiarize metallurgists, engineers, and students with the mathematical treatments that can be used for such studies. The procedures used for the calculations are described in detail, and examples of calculations are provided in the Appendix.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3010
Author(s):  
Raphael Lamprecht ◽  
Florian Scheible ◽  
Marion Semmler ◽  
Alexander Sutor

Ultrasound elastography is a constantly developing imaging technique which is capable of displaying the elastic properties of tissue. The measured characteristics could help to refine physiological tissue models, but also indicate pathological changes. Therefore, elastography data give valuable insights into tissue properties. This paper presents an algorithm that measures the spatially resolved Young’s modulus of inhomogeneous gelatin phantoms using a CINE sequence of a quasi-static compression and a load cell measuring the compressing force. An optical flow algorithm evaluates the resulting images, the stresses and strains are computed, and, conclusively, the Young’s modulus and the Poisson’s ratio are calculated. The whole algorithm and its results are evaluated by a performance descriptor, which determines the subsequent calculation and gives the user a trustability index of the modulus estimation. The algorithm shows a good match between the mechanically measured modulus and the elastography result—more precisely, the relative error of the Young’s modulus estimation with a maximum error 35%. Therefore, this study presents a new algorithm that is capable of measuring the elastic properties of gelatin specimens in a quantitative way using only the image data. Further, the computation is monitored and evaluated by a performance descriptor, which measures the trustability of the results.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 968
Author(s):  
Fumitada Iguchi ◽  
Keisuke Hinata

The elastic properties of 0, 10, 15, and 20 mol% yttrium-doped barium zirconate (BZY0, BZY10, BZY15, and BZY20) at the operating temperatures of protonic ceramic fuel cells were evaluated. The proposed measurement method for low sinterability materials could accurately determine the sonic velocities of small-pellet-type samples, and the elastic properties were determined based on these velocities. The Young’s modulus of BZY10, BZY15, and BZY20 was 224, 218, and 209 GPa at 20 °C, respectively, and the values decreased as the yttrium concentration increased. At high temperatures (>20 °C), as the temperature increased, the Young’s and shear moduli decreased, whereas the bulk modulus and Poisson’s ratio increased. The Young’s and shear moduli varied nonlinearly with the temperature: The values decreased rapidly from 100 to 300 °C and gradually at temperatures beyond 400 °C. The Young’s modulus of BZY10, BZY15, and BZY20 was 137, 159, and 122 GPa at 500 °C, respectively, 30–40% smaller than the values at 20 °C. The influence of the temperature was larger than that of the change in the yttrium concentration.


2010 ◽  
Vol 139-141 ◽  
pp. 594-599
Author(s):  
Yan Qiu Zhang ◽  
Shu Yong Jiang ◽  
Yu Feng Zheng

The spring steel strip 50CrVA which is cold rolled was applied to manufacture the diaphragm of the automotive horn by means of sheet metal forming. The combination of the experiments with back-propagation artificial neural network (BPANN) is used to solve the springback problem of the diaphragm. Experiments have shown that a 4-8-1 BPANN is able to predict the springback of the diaphragm successfully, and the network is able to model the relationship between the springback of the diaphragm and the process parameters rationally. BPANN simulation results and experimental ones have shown that the springback of the diaphragm is particularly influenced by such parameters as blank thickness, Young’s modulus, punch radius and yield ratio. Furthermore, the springback of the diaphragm decreases with the increase of blank thickness and Young’s modulus, but increases with the increase of punch radius and yield ratio.


2019 ◽  
Vol 1 (1) ◽  
pp. 74
Author(s):  
Grib S.V. ◽  
Ivasishin O.M. ◽  
Illarionov A.G. ◽  
Karabanalov M.S.

.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1252 ◽  
Author(s):  
Martin Diehl ◽  
Jörn Niehuesbernd ◽  
Enrico Bruder

The influence of grain shape and crystallographic orientation on the global and local elastic and plastic behaviour of strongly textured materials is investigated with the help of full-field simulations based on texture data from electron backscatter diffraction (EBSD) measurements. To this end, eight different microstructures are generated from experimental data of a high-strength low-alloy (HSLA) steel processed by linear flow splitting. It is shown that the most significant factor on the global elastic stress–strain response (i.e., Young’s modulus) is the crystallographic texture. Therefore, simple texture-based models and an analytic expression based on the geometric mean to determine the orientation dependent Young’s modulus are able to give accurate predictions. In contrast, with regards to the plastic anisotropy (i.e., yield stress), simple analytic approaches based on the calculation of the Taylor factor, yield different results than full-field microstructure simulations. Moreover, in the case of full-field models, the selected microstructure representation influences the outcome of the simulations. In addition, the full-field simulations, allow to investigate the micro-mechanical fields, which are not readily available from the analytic expressions. As the stress–strain partitioning visible from these fields is the underlying reason for the observed macroscopic behaviour, studying them makes it possible to evaluate the microstructure representations with respect to their capabilities of reproducing experimental results.


Nanoscale ◽  
2018 ◽  
Vol 10 (27) ◽  
pp. 13022-13027 ◽  
Author(s):  
Basant Chitara ◽  
Assaf Ya'akobovitz

The present study highlights the elastic properties of suspended GaS, GaSe and GaTe nanosheets using atomic force microscopy. GaS exhibited the highest Young's modulus (∼173 GPa) among these nanosheets. These materials can withstand maximal stresses of up to 8 GPa and a maximal strain of 7% before breaking, making them suitable for stretchable electronic and optomechanical devices.


2016 ◽  
Vol 30 (08) ◽  
pp. 1650118 ◽  
Author(s):  
Igor K. Petrushenko ◽  
Konstantin B. Petrushenko

The structural and elastic properties of neutral and ionized dichlorocarbene (CCl2) functionalized single-walled carbon nanotubes (SWCNTs) were studied using density functional theory (DFT). The Young’s modulus of ionized pristine SWCNTs is found to decrease in comparison to that of neutral models. The interesting effect of increase in Young’s modulus values of ionized functionalized SWCNTs is observed. We ascribe this feature to the concurrent processes of the bond elongation on ionization and the local deformation on cycloaddition. The strong dependence of the elasticity modulus on the number of addends is also observed. However, the CCl2-attached SWCNTs in their neutral and ionized forms remain strong enough to be suitable for the reinforcement of composites. In contrast to the elastic properties, the binding energies do not change significantly, irrespective of CCl2 coverage.


Sign in / Sign up

Export Citation Format

Share Document