Annealing of the sputtered AlN buffer layer on r -plane sapphire and its effect on a -plane GaN crystalline quality

2017 ◽  
Vol 254 (8) ◽  
pp. 1600723 ◽  
Author(s):  
Daiki Jinno ◽  
Shunya Otsuki ◽  
Teruyuki Niimi ◽  
Shogo Sugimori ◽  
Hisayoshi Daicho ◽  
...  
2008 ◽  
Vol 600-603 ◽  
pp. 255-258
Author(s):  
Gwiy Sang Chung ◽  
Kang San Kim

This paper describes the characteristics of poly (Polycrystalline) 3C-SiC grown on SiO2 and AlN buffers, respectively. The crystallinity and the bonding structure of poly 3C-SiC grown on each buffer layer were investigated according to various growth temperatures. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (Full width half maximum) of XRD and FT-IR by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was 1100 °C. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each buffer layer were investigated by XPS and Hall Effect. The chemical compositions of surface of poly 3C-SiC grown on SiO2 and AlN were not different. However, their electron mobilities were 7.65 ㎝2/V.s and 14.8 ㎝2/V.s, respectively. Therefore, since the electron mobility of 3C-SiC/AlN was two times higher than that of 3C-SiC/SiO2, AlN is a suitable material, as buffer layer, for SiC growth with excellent crystalline quality.


2017 ◽  
Vol 480 ◽  
pp. 90-95 ◽  
Author(s):  
Daiki Jinno ◽  
Shunya Otsuki ◽  
Shogo Sugimori ◽  
Hisayoshi Daicho ◽  
Motoaki Iwaya ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 928
Author(s):  
Yong Du ◽  
Zhenzhen Kong ◽  
Muhammet Toprak ◽  
Guilei Wang ◽  
Yuanhao Miao ◽  
...  

This work presents the growth of high-quality Ge epilayers on Si (001) substrates using a reduced pressure chemical vapor deposition (RPCVD) chamber. Based on the initial nucleation, a low temperature high temperature (LT-HT) two-step approach, we systematically investigate the nucleation time and surface topography, influence of a LT-Ge buffer layer thickness, a HT-Ge growth temperature, layer thickness, and high temperature thermal treatment on the morphological and crystalline quality of the Ge epilayers. It is also a unique study in the initial growth of Ge epitaxy; the start point of the experiments includes Stranski–Krastanov mode in which the Ge wet layer is initially formed and later the growth is developed to form nuclides. Afterwards, a two-dimensional Ge layer is formed from the coalescing of the nuclides. The evolution of the strain from the beginning stage of the growth up to the full Ge layer has been investigated. Material characterization results show that Ge epilayer with 400 nm LT-Ge buffer layer features at least the root mean square (RMS) value and it’s threading dislocation density (TDD) decreases by a factor of 2. In view of the 400 nm LT-Ge buffer layer, the 1000 nm Ge epilayer with HT-Ge growth temperature of 650 °C showed the best material quality, which is conducive to the merging of the crystals into a connected structure eventually forming a continuous and two-dimensional film. After increasing the thickness of Ge layer from 900 nm to 2000 nm, Ge surface roughness decreased first and then increased slowly (the RMS value for 1400 nm Ge layer was 0.81 nm). Finally, a high-temperature annealing process was carried out and high-quality Ge layer was obtained (TDD=2.78 × 107 cm−2). In addition, room temperature strong photoluminescence (PL) peak intensity and narrow full width at half maximum (11 meV) spectra further confirm the high crystalline quality of the Ge layer manufactured by this optimized process. This work highlights the inducing, increasing, and relaxing of the strain in the Ge buffer and the signature of the defect formation.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 399
Author(s):  
Sang-Jo Kim ◽  
Semi Oh ◽  
Kwang-Jae Lee ◽  
Sohyeon Kim ◽  
Kyoung-Kook Kim

We demonstrate the highly efficient, GaN-based, multiple-quantum-well light-emitting diodes (LEDs) grown on Si (111) substrates embedded with the AlN buffer layer using NH3 growth interruption. Analysis of the materials by the X-ray diffraction omega scan and transmission electron microscopy revealed a remarkable improvement in the crystalline quality of the GaN layer with the AlN buffer layer using NH3 growth interruption. This improvement originated from the decreased dislocation densities and coalescence-related defects of the GaN layer that arose from the increased Al migration time. The photoluminescence peak positions and Raman spectra indicate that the internal tensile strain of the GaN layer is effectively relaxed without generating cracks. The LEDs embedded with an AlN buffer layer using NH3 growth interruption at 300 mA exhibited 40.9% higher light output power than that of the reference LED embedded with the AlN buffer layer without NH3 growth interruption. These high performances are attributed to an increased radiative recombination rate owing to the low defect density and strain relaxation in the GaN epilayer.


2015 ◽  
Vol 45 (2) ◽  
pp. 859-866 ◽  
Author(s):  
Wei-Ching Huang ◽  
Chung-Ming Chu ◽  
Chi-Feng Hsieh ◽  
Yuen-Yee Wong ◽  
Kai-wei Chen ◽  
...  

2019 ◽  
Vol 217 (7) ◽  
pp. 1900694
Author(s):  
Uiho Choi ◽  
Donghyeop Jung ◽  
Kyeongjae Lee ◽  
Taemyung Kwak ◽  
Taehoon Jang ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 251-254 ◽  
Author(s):  
Yong Mei Zhao ◽  
Guo Sheng Sun ◽  
Xing Fang Liu ◽  
Jia Ye Li ◽  
Wan Shun Zhao ◽  
...  

Using AlN as a buffer layer, 3C-SiC film has been grown on Si substrate by low pressure chemical vapor deposition (LPCVD). Firstly growth of AlN thin films on Si substrates under varied V/III ratios at 1100oC was investigated and the (002) preferred orientational growth with good crystallinity was obtained at the V/III ratio of 10000. Annealing at 1300oC indicated the surface morphology and crystallinity stability of AlN film. Secondly the 3C-SiC film was grown on Si substrate with AlN buffer layer. Compared to that without AlN buffer layer, the crystal quality of the 3C-SiC film was improved on the AlN/Si substrate, characterized by X-ray diffraction (XRD) and Raman measurements.


2014 ◽  
Vol 881-883 ◽  
pp. 1117-1121 ◽  
Author(s):  
Xiang Min Zhao

ZnO thin films with different thickness (the sputtering time of AlN buffer layers was 0 min, 30 min,60 min, and 90 min, respectively) were prepared on Si substrates using radio frequency (RF) magnetron sputtering system.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO thin films with different sputtering time of AlN buffer layer,and for the better growth of ZnO films, the optimal sputtering time is 60 min.


2007 ◽  
Vol 91 (25) ◽  
pp. 251902 ◽  
Author(s):  
R. Songmuang ◽  
O. Landré ◽  
B. Daudin

2005 ◽  
Vol 198 (1-3) ◽  
pp. 350-353 ◽  
Author(s):  
Xianfeng Ni ◽  
Liping Zhu ◽  
Zhizhen Ye ◽  
Zhe Zhao ◽  
Haiping Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document