Electrical characterization of MIS structures with HfOx gate dielectric films fabricated on silicon substrates modified by ultra-shallow ion implantation from RF plasma

2016 ◽  
Vol 13 (10-12) ◽  
pp. 816-821 ◽  
Author(s):  
Robert Mroczyński ◽  
Małgorzata Kalisz ◽  
Magdalena Dominik
2006 ◽  
Vol 917 ◽  
Author(s):  
Carlos Driemeier ◽  
Elizandra Martinazzi ◽  
Israel J. R. Baumvol ◽  
Evgeni Gusev

AbstractHfO2-based materials are the leading candidates to replace SiO2 as the gate dielectric in Si-based metal-oxide-semiconductor filed-effect transistors. The ubiquitous presence of water vapor in the environments to which the dielectric films are exposed (e.g. in environmental air) leads to questions about how water could affect the properties of the dielectric/Si structures. In order to investigate this topic, HfO2/SiO2/Si(001) thin film structures were exposed at room temperature to water vapor isotopically enriched in 2H and 18O followed by quantification and profiling of these nuclides by nuclear reaction analysis. We showed i) the formation of strongly bonded hydroxyls at the HfO2 surface; ii) room temperature migration of oxygen and water-derived oxygenous species through the HfO2 films, indicating that HfO2 is a weak diffusion barrier for these oxidizing species; iii) hydrogenous, water-derived species attachment to the SiO2 interlayer, resulting in detrimental hydrogenous defects therein. Consequences of these results to HfO2-based metal-oxide-semiconductor devices are discussed.


2021 ◽  
Vol 12 (2) ◽  
pp. 517-520
Author(s):  
D. V. Andreev ◽  
G. G. Bondarenko ◽  
V. V. Andreev ◽  
A. A. Stolyarov

2018 ◽  
Vol 2018 (1) ◽  
pp. 000728-000733
Author(s):  
Piotr Mackowiak ◽  
Rachid Abdallah ◽  
Martin Wilke ◽  
Jash Patel ◽  
Huma Ashraf ◽  
...  

Abstract In the present work we investigate the quality of low temperature Plasma Enhanced Chemical Vapor Deposition (PECVD) and plasma treated Tetraethyl orthosilicate (TEOS)-based TSV-liner films. Different designs of Trough Silicon Via (TSV) Test structures with 10μm and 20μm width and a depth of 100μm have been fabricated. Two differently doped silicon substrates have been used – highly p-doped and moderately doped. The results for break-through, resistivity and capacitance for the 20μm structures show a better performance compared to the 10μm structures. This is mainly due to increased liner thickness in the reduced aspect ratio case. Lower interface traps and oxide charge densities have been observed in the C-V measurements results for the 10μm structures.


2004 ◽  
Vol 811 ◽  
Author(s):  
S. Van Elshocht ◽  
B. Brijs ◽  
M. Caymax ◽  
T. Conard ◽  
S. De Gendt ◽  
...  

ABSTRACTGermanium is because of its intrinsically higher mobility than Si, currently under consideration as an alternative approach to improve transistor performance. Germanium oxide, however, is thermodynamically unstable, preventing formation of the gate dielectric by simple oxidation. At present, high-k dielectrics might be considered as an enabling technology as much progress has been made in the deposition of thin high-quality layers.In this paper, we study the growth and physical properties of HfO2 deposited on Ge by MOCVD, using TDEAH and O2 as precursors, and compare the results to similar layers deposited on silicon substrates. Our results show that the physical properties of MOCVD-deposited HfO2 layers on Ge are very similar to what we have observed in the past for Si. Unfortunately, some of the negative aspects observed for Si, such as diffusion of substrate material in the high-k layer, a low density for thinner layers, or a rough top surface, are also observed for the case of Ge. However, careful surface pretreatments such as NH3 annealing the Ge substrate prior to deposition, can greatly improve the physical properties. An important observation is the very thin interfacial layer between HfO2 and Ge substrate, allowing a more aggressive scaling for Ge.


2004 ◽  
Vol 95 (12) ◽  
pp. 7982-7989 ◽  
Author(s):  
S. Elhamri ◽  
R. Berney ◽  
W. C. Mitchel ◽  
W. D. Mitchell ◽  
J. C. Roberts ◽  
...  

2003 ◽  
Author(s):  
Hee Sung Kang ◽  
Wu-yun Quan ◽  
Kyung Soo Kim ◽  
Chang Bong Oh ◽  
Hyuk Ju Ryu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document