scholarly journals Simulation of FIB-SEM Images for Analysis of Porous Microstructures

Scanning ◽  
2012 ◽  
Vol 35 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Torben Prill ◽  
Katja Schladitz
2014 ◽  
Vol 905 ◽  
pp. 310-313
Author(s):  
Jian Liang Gong ◽  
Bin Gang Xu ◽  
Hua Yang Yu ◽  
Xiao Ming Tao

The microstructure of asphalt materials on photocatalytic performance was studied in this work. Firstly, asphalt composite coatings with highly ordered honeycomb microstructures were fabricated by a bottom-up approach through adjusting the solution concentration and the content of polystyrene (PS) additive. Further incorporation of titanium dioxide (TiO2) nanoparticles endows the porous coatings with photocatalytic functionality. SEM images demonstrate that TiO2nanoparticles disperse and decorate on the pore walls of coating. In comparison to the compact coatings prepared by traditional method, the obtained honeycomb microstructured asphalt/PS/TiO2coatings possess an enhanced and sustainable efficiency of removing NOx. Specifically, when introducing porous microstructures to the coating, the NOxreduction efficiency is 16% higher than that of traditional compact sample and shows no attenuation in continuous use.


Author(s):  
M. D. Coutts ◽  
E. R. Levin

On tilting samples in an SEM, the image contrast between two elements, x and y often decreases to zero at θε, which we call the no-contrast angle. At angles above θε the contrast is reversed, θ being the angle between the specimen normal and the incident beam. The available contrast between two elements, x and y, in the SEM can be defined as,(1)where ix and iy are the total number of reflected and secondary electrons, leaving x and y respectively. It can easily be shown that for the element x,(2)where ib is the beam current, isp the specimen absorbed current, δo the secondary emission at normal incidence, k is a constant, and m the reflected electron coefficient.


Author(s):  
J.D. Geller ◽  
C.R. Herrington

The minimum magnification for which an image can be acquired is determined by the design and implementation of the electron optical column and the scanning and display electronics. It is also a function of the working distance and, possibly, the accelerating voltage. For secondary and backscattered electron images there are usually no other limiting factors. However, for x-ray maps there are further considerations. The energy-dispersive x-ray spectrometers (EDS) have a much larger solid angle of detection that for WDS. They also do not suffer from Bragg’s Law focusing effects which limit the angular range and focusing distance from the diffracting crystal. In practical terms EDS maps can be acquired at the lowest magnification of the SEM, assuming the collimator does not cutoff the x-ray signal. For WDS the focusing properties of the crystal limits the angular range of acceptance of the incident x-radiation. The range is dependent upon the 2d spacing of the crystal, with the acceptance angle increasing with 2d spacing. The natural line width of the x-ray also plays a role. For the metal layered crystals used to diffract soft x-rays, such as Be - O, the minimum magnification is approximately 100X. In the worst case, for the LEF crystal which diffracts Ti - Zn, ˜1000X is the minimum.


Author(s):  
M.A. Cuadros ◽  
M.J. Martinez-Guerrero ◽  
A. Rios

In the chick embryo retina (days 3-4 of incubation), coinciding with an increase in cell death, specialized phagocytes characterized by intense acid phosphatase activity have been described. In these preparations, all free cells in the vitreal humor (vitreal cells) were strongly labeled. Conventional TEM and SEM techniques were used to characterize them and attempt to determine their relationship with retinal phagocytes.Two types of vitreal cells were distinguished. The first are located at some distance from the basement membrane of the neuroepithelium, and are rounded, with numerous vacuoles and thin cytoplasmic prolongations. Images of exo- and or endocytosis were frequent; the cells showed a well-developed Golgi apparatus (Fig. 1) In SEM images, the cells was covered with short cellular processes (Fig. 3). Cells lying parallel to or alongside the basement membrane are elongated. The plasma membrane is frequently in intimate contact with the basement membrane. These cells have generally a large cytoplasmic expansion (Fig. 5).


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


Author(s):  
H. Sh. Hammood ◽  
S. S. Irhayyim ◽  
A. Y. Awad ◽  
H. A. Abdulhadi

Multiwall Carbon nanotubes (MWCNTs) are frequently attractive due to their novel physical and chemical characteristics, as well as their larger aspect ratio and higher conductivity. Therefore, MWCNTs can allow tremendous possibilities for the improvement of the necessarily unique composite materials system. The present work deals with the fabrication of Cu-Fe/CNTs hybrid composites manufactured by powder metallurgy techniques. Copper powder with 10 vol. % of iron powder and different volume fractions of Multi-Wall Carbon Nanotubes (MWCNTs) were mixed to get hybrid composites. The hybrid composites were fabricated by adding 0.3, 0.6, 0.9, and 1.2 vol.% of MWCNTs to Cu- 10% Fe mixture using a mechanical mixer. The samples were compressed under a load of 700 MPa using a hydraulic press to compact the samples. Sintering was done at 900°C for 2 h at 5ºC/min heating rate. The microscopic structure was studied using a Scanning Electron Microscope (SEM). The effect of CNTs on the mechanical and wear properties, such as micro-hardness, dry sliding wear, density, and porosity were studied in detail. The wear tests were carried out at a fixed time of 20 minutes while the applied loads were varied (5, 10, 15, and 20 N). SEM images revealed that CNTs were uniformly distributed with relative agglomeration within the Cu/Fe matrix. The results showed that the hardness, density, and wear rates decreased while the percentage of porosity increased with increasing the CNT volume fraction. Furthermore, the wear rate for all the CNTs contents increased with the applied load.


Author(s):  
Ahmad Almehmadi

Abstract The re-use of healing abutments (HAs) has become common practice in implant dentistry for economic concerns and the aim of this in-vitro study was to assess the effect of sodium hypochlorite (NaOCl) in decontamination of HAs. 122 HAs (Used and sterilized n=107; New n=15) were procured from 3 centers, of which 3 samples were discarded due to perforation in sterilization pouch.  For sterility assessment, the used HAs (n=80) were cultured in Brain Heart Infusion Broth (BHI) and Potato Dextrose Agar (PDA), bacterial isolates were identified in 7 samples. Also, 24 used HAs were stained with Phloxine B, photographed and compared to new HAs (n=5). Scanning electron microscope (SEM) assessed the differences between the two sets of HAs, following which the 7 contaminated HAs along with 24 used HAs from staining experiment (Total=31) were subsequently treated with sodium hypochlorite (NaOCl) and SEM images were observed. About 8.75% of HAs tested positive in bacterial culture; Streptococcus sanguis, Dermabacter hominis, Staphylococcus haemolyticus, and Aspergillus species were isolated. Phloxine B staining was positive for used and sterilized HAs when compared to controls. The SEM images revealed deposits in the used HAs and although treatment with NaOCl eliminated the contamination of cultured HAs, the SEM showed visible debris in the HA thread region. This in-vitro study concluded that SEM images showed debris in used HAs at screw-hole and thread regions even though they tested negative in bacterial culture. The treatment with NaOCl of used HAs showed no bacterial contamination but the debris was observed in SEM images. Future studies on the chemical composition, biological implications, and clinical influence is warranted before considering the reuse of HAs.


2020 ◽  
Vol 45 (4) ◽  
pp. 826-832
Author(s):  
Lamarck Rocha ◽  
Maria Mercedes Arbo

Abstract—Turnera macrosperma, a new species from the Brazilian Cerrado, is described and illustrated. The new species belongs to the series Turnera and can be characterized by the white petals with dark blue/violet basal spot and large seeds with papillose aril. SEM images, distribution map, and comments on taxonomy and morphology are presented.


Sign in / Sign up

Export Citation Format

Share Document