57.3:Distinguished Paper: New Pixel Circuits for Controlling Threshold Voltage by Back-gate Bias Voltage using Crystalline Oxide Semiconductor FETs

2015 ◽  
Vol 46 (1) ◽  
pp. 857-860 ◽  
Author(s):  
Makoto Kaneyasu ◽  
Kouhei Toyotaka ◽  
Hideaki Shishido ◽  
Toshiyuki Isa ◽  
Shingo Eguchi ◽  
...  
2015 ◽  
Vol 24 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Makoto Kaneyasu ◽  
Kouhei Toyotaka ◽  
Hideaki Shishido ◽  
Toshiyuki Isa ◽  
Shingo Eguchi ◽  
...  

Author(s):  
Kai Zhang ◽  
Weifeng Lü ◽  
Peng Si ◽  
Zhifeng Zhao ◽  
Tianyu Yu

Background: In state-of-the-art nanometer metal-oxide-semiconductor-field-effect- transistors (MOSFETs), optimization of timing characteristic is one of the major concerns in the design of modern digital integrated circuits. Objective: This study proposes an effective back-gate-biasing technique to comprehensively investigate the timing and its variation due to random dopant fluctuation (RDF) employing Monte Carlo methodology. Methods: To analyze RDF-induced timing variation in a 22-nm complementary metal-oxide semiconductor (CMOS) inverter, an ensemble of 1000 different samples of channel-doping for negative metal-oxide semiconductor (NMOS) and positive metal-oxide semiconductor (PMOS) was reproduced and the input/output curves were measured. Since back-gate bias is technology dependent, we present in parallel results with and without VBG. Results: It is found that the suppression of RDF-induced timing variations can be achieved by appropriately adopting back-gate voltage (VBG) through measurements and detailed Monte Carlo simulations. Consequently, the timing parameters and their variations are reduced and, moreover, that they are also insensitive to channel doping with back-gate bias. Conclusion: Circuit designers can appropriately use back-gate bias to minimize timing variations and improve the performance of CMOS integrated circuits.


2008 ◽  
Vol 47 (8) ◽  
pp. 6272-6276 ◽  
Author(s):  
Vojkan Davidović ◽  
Ninoslav Stojadinović ◽  
Danijel Danković ◽  
Snežana Golubović ◽  
Ivica Manić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document