Evaluation of Thermal Breakage in Bimetallic Work Roll Considering Heat Treated Residual Stress Combined with Thermal Stress during Hot Rolling

2017 ◽  
Vol 89 (4) ◽  
pp. 1700368 ◽  
Author(s):  
Kejun Hu ◽  
Yongmei Xia ◽  
Fuxian Zhu ◽  
Nao-Aki Noda
Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 966 ◽  
Author(s):  
Kejun Hu ◽  
Fuxian Zhu ◽  
Jufang Chen ◽  
Nao-Aki Noda ◽  
Wenqin Han ◽  
...  

Considerable residual stress is produced during heat treatment. Compressive residual stress at the shell is conductive to improving the thermal fatigue life of a work roll, while tensile stress in the core could cause thermal breakage. In hot rolling, thermal stress occurs under the heating-cooling cycles over the roll surface due to the contact with the hot strip and water spray cooling. The combination of thermal stress and residual stress remarkably influences the life of a work roll. In this paper, finite element method (FEM) simulation of hot rolling is performed by treating the residual stress as the initial stress. Afterwards, the effects of the initial roll temperature and cooling conditions on thermal stress considering the initial residual stress are discussed. Lastly, the thermal fatigue life of a work roll is estimated based on the strain life model. The higher initial roll temperature causes a higher temperature but a lower compressive thermal stress at the roll surface. The surface temperature and compressive stress increase significantly in the insufficient cooling conditions, as well as the center tensile stress. The calculation of the fatigue life of a work roll based on the universal slopes model according to the 10% rule and 20% rule is reasonable compared with experimental results.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5054
Author(s):  
Kejun Hu ◽  
Qinghe Shi ◽  
Wenqin Han ◽  
Fuxian Zhu ◽  
Jufang Chen

An accurate prediction of temperature and stress evolution in work rolls is crucial to assess the service life of the work roll. In this paper, a finite element method (FEM) model with a deformable work roll and a meshed, rigid body considering complex thermal boundary conditions over the roll surface is proposed to assess the temperature and the thermal stress in work rolls during hot rolling and subsequent idling. After that, work rolls affected by the combined action of temperature gradient and rolling pressure are investigated by taking account of the hot strip. The accuracy of the proposed model is verified through comparison with the calculation results obtained from the mathematical model. The results show that thermal stress is dominant in the bite region of work rolls during hot rolling. Afterwards, the heat treatment residual stresses which are related to thermal fatigue are simulated and introduced into the work roll as the initial stress to evaluate the redistribution under the thermal cyclic loads during the hot rolling process. Results show that the residual stress significantly changed near the roll surface.


2010 ◽  
Vol 2 (1) ◽  
pp. 707-716 ◽  
Author(s):  
D. Benasciutti ◽  
E. Brusa ◽  
G. Bazzaro

1979 ◽  
pp. 227-232 ◽  
Author(s):  
Atsutomo Komine ◽  
Hideo Ueda ◽  
Eisuke Nakanishi ◽  
Shotaro Araki ◽  
Kazuo Taguchi

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kezhi Huang ◽  
Weijing Wang ◽  
Qinghe Yu ◽  
Lei Hao ◽  
Jing Mi ◽  
...  

A deuterium permeation barrier is an essential part in the core component of nuclear reactors. It can protect the structure made of steel from being penetrated by deuterium in a fusion reactor. However, residual stress induced in the operation would dramatically influence the mechanical endurance of the coating, threatening the safety of the facilities. In this paper, finite element analysis was conducted to investigate the residual stress in nanoscale Al2O3 and Y2O3 coatings and their composites under thermal shock, from 700°C to 25°C. The max principal stress is assumed as the cause of crack initiation in the coating, because ceramics are brittle and fragile under tensile stress. Max shear stress and max Mises stress in the systems are also analyzed, and the effect of thickness in the range 100 nm to 1000 nm was investigated. The max principal stress in Al2O3 coating reaches its maximum value, 1.33 GPa, when the thickness of coating reaches 450 nm. And the max principal stress decreases at a very low rate as the thickness increases exceeding 450 nm. The max principal stress in Y2O3 coating increases rapidly as the thickness increases when the thickness of the coating is below 250 nm, and the max principal stress is at about 0.9 GPa when the thickness exceeds 500 nm. The max principal stress in the Y2O3/Al2O3 (150 nm) composite coating occurs in the Al2O3 layer and shows no difference from the single layer of 150 nm thick Al2O3 coating. The max principal stress site of all three kinds of coating is located at the edge of the coating 25 nm away from the interface. The result shows that residual thermal stress in the coating increases as the thickness increases when the thickness of the coating is below 200 nm due to the stress singularity of the interface. And as the thickness exceeds 500 nm, the increase in thickness has little impact on the residual thermal stress in the coating. Coating an Y2O3 top layer will not introduce any more residual thermal stress under the thermal shock condition. The Y2O3 coating causes much less residual stress under thermal shock compared with Al2O3 owing to its much lower Young’s modulus. The max principal stress in the 300 nm thick Y2O3 coating is 0.85 GPa while that of the Al2O3 coating is 1.16 GPa. The max residual stress of the composite Y2O3/Al2O3 (150 nm) coating is determined by the Al2O3 layer.


2016 ◽  
Vol 725 ◽  
pp. 647-652 ◽  
Author(s):  
Yusuke Yanagisawa ◽  
Yasuhiro Kishi ◽  
Katsuhiko Sasaki

The residual stress distributions of the forgings after both water-cooling and air-cooling were measured experimentally. The residual stress occurring during the heat-treatment was also simulated considering the phase transformation and the transformation plasticity. A comparison of the experiments with the simulations showed a good agreement. These results shows that the transformation plastic strain plays an important role in the heat treatment of large forged shafts.


2000 ◽  
Vol 123 (1) ◽  
pp. 130-134
Author(s):  
Makoto Hayashi ◽  
Kunio Enomoto

Changes in the residual stress in a worked surface layer of type 304 austenitic stainless steel due to tensile deformation were measured by the X-ray diffraction residual stress measuring method. The compressive residual stresses introduced by end-mill, end-mill side cutter, and grinder were easily changed into tensile stresses when the plate specimens were subjected to tensile stress greater than the yield stress of the solid solution heat-treated material. The residual stresses after the tensile deformation depend on the initial residual stresses and the degree of preliminary working. The behavior of the residual stress changes can be interpreted if the surface-worked material is regarded as a composite made of solid solution heat-treated material and work-hardened material.


2009 ◽  
Vol 417-418 ◽  
pp. 173-176
Author(s):  
Hiroyuki Waki ◽  
Akira Kobayashi

Thermal barrier coatings (TBCs) have been employed for the insulation of substrates from high temperature in gas turbine plants. The TBC system consists of ceramic top coating, metallic bond coating and substrate. Delamination of the ceramic coating is important problem in TBC systems. In this paper, the delamination mechanism was studied by residual stress history under thermal aging and thermal cycle conditions. In-plane residual stress histories of ceramic coating and bond coating after thermal aging and cycling were measured by X-ray diffraction method. The residual stress under thermal cycling was also calculated by FEM analysis. The results obtained were as follows: (1) in-plane surface residual stresses of the coatings scarcely changed regardless of the increase of thermally grown oxidation (TGO). (2) high compressive thermal stress, residual stress at room temperature, in ceramic coating induced by thermal stress did not occur. It was found that stress of ceramic top coating was relaxed by micro cracks and driving stress of delamination was in-plane high compressive stress.


Sign in / Sign up

Export Citation Format

Share Document