scholarly journals Influence of corn variety, drying temperature, and moisture content at harvest on the saccharides released during an in vitro pepsin-pancreatin digestion

2017 ◽  
Vol 69 (11-12) ◽  
pp. 1600292 ◽  
Author(s):  
Sylvanus Odjo ◽  
François Huart ◽  
François Béra ◽  
Nicolas Jacquet ◽  
Aurore Richel ◽  
...  
2020 ◽  
Vol 17 ◽  
Author(s):  
Bingwei Wang ◽  
Jianping Liu ◽  
Zhenghua Li ◽  
Yulong Xia ◽  
Shuangshuang Zhang ◽  
...  

Background: At present, there were numerous researches on the migration of components in tablets and granules, the investigation in the pharmaceutical literatrue concerning the effect of drying rate on the migration of water-soluble components of pellets was limited. Temperature and relative humidity (RH) were crucial parameters during the drying process which was an essential step in the preparation of pellets via wet extrusion/spheronization. To quantify these variables, the water loss percentage of pellets per minute was defined as drying rate. Objective: The study aimed to investigate the influence of drying rate on the migration of water-soluble components in wet pellets and the potential migrated mechanism. Methods: The pellets containing tartrazine as a water-soluble model drug and microcrystalline cellulose as a matrix former were prepared by extrusion/spheronization and dried at four different drying temperature and relative humidity. Afterward, the extent of migrated tartrazine was assessed regarding appearance, in-vitro dissolution test, Differential Scanning Calorimetry, X-Ray Powder Diffraction, Attenuated total reflectance Fourier transform infrared spectroscopy and Confocal Raman Mapping. Results: Results demonstrated that red spots of tartrazine appeared on the surface of pellets and more than 40% tartrazine were burst released within 5 minutes when pellets dried at 60℃/RH 10%. While pellets dried at 40℃/RH 80%, none of these aforementioned phenomena was observed. Conclusion: In conclusion, the faster drying rate was, the more tartrazine migrated to the exterior of pellets. Adjusting drying temperature and relative humidity appropriately could inhibit the migration of water-soluble components within wet extrusion/spheronization pellets.


1975 ◽  
Vol 55 (1) ◽  
pp. 77-84 ◽  
Author(s):  
T. B. DAYNARD ◽  
R. B. HUNTER

Identical experiments were conducted at the Elora Research Station, near Guelph, Ontario in 1970 and 1971 with the objective of determining the relationships among whole-plant dry matter (DM) yield, whole-plant moisture content, and grain moisture content of corn (Zea mays L.) during the later part of the growing season. Each experiment involved eight commercial hybrids representative of the range in maturity, endosperm type, lodging resistance, and grain yield potential of corn hybrids grown commercially in central Ontario. The hybrids were sampled at weekly intervals over an 8-wk period beginning approximately 1 September; the sampled plants were divided into their leaf, stalk, husk, ear and grain components and oven-dried. Fresh and dry weights were used to calculate dry matter (DM) yields and "at harvest" moisture contents of the various components, and of the entire plant. Averaged across the eight hybrids, maximum DM yield was attained at whole-plant moisture content of 66–70%, and a grain moisture content of 45–50%. Among hybrids, 66% whole-plant moisture corresponded to a range in grain moisture content from 41 to 47%. Two additional experiments were grown also at Elora in 1970 and 1971 to evaluate the effects of harvest date on the DM yield and in vitro digestibility of corn plants and their component plant parts. Each experiment involved four representative commercial hybrids which were sampled at four equal time intervals during the month of September, and divided into grain, cob, husks (including shank) and stover (including leaves, leaf sheaths, stalks and tassels) for dry weight and in vitro digestibility measurement. Whole-plant DM digestibility was essentially constant over a range of whole-plant moisture from 76 to 56% in 1970, and from 76 to 64% in 1971. The consistency of whole-plant digestibility was the result of compensating changes in component yield and digestibility. A decrease in the digestibility of the stover, husks and cob with delayed harvest was compensated for by an increase in the proportion of grain in the whole-plant yield.


2020 ◽  
Vol 63 (3) ◽  
pp. 583-595 ◽  
Author(s):  
Kaushik Luthra ◽  
Sammy S. Sadaka

Highlights Fluidized bed drying of rice has several advantages that outweigh its disadvantages. Increasing the drying temperature above 60°C could reduce rice quality. Research related to energy and exergy efficiencies in fluidized bed dryers of rice is needed. Abstract. Rice (Oryza sativa L.) is a staple food for more than half the world’s population. World rice production reached approximately 740 million metric tons (MMT) in 2018 due to the ever-increasing demand driven by population and economic growth. Rice producers face challenges in meeting this demand, especially in developing countries where rice is prone to spoilage if the moisture content is not reduced to a safe level shortly after harvest. Rice producers, particularly in developing countries, typically use conventional drying methods, i.e., sun drying and natural air drying. These methods are time-consuming and environmentally dependent. On the other hand, fluidized bed drying, which is a well established technology, could provide rice producers with an effective drying technique that is quick, practical, affordable, and portable. Several innovative designs for fluidized bed dryers have been developed that could be installed on-farm or off-farm at a reasonable cost. Some studies have mentioned that the main advantage of fluidized bed drying is the increase in drying rate and the reduction of rice spoilage after harvest. Conversely, other studies have raised alarms regarding low rice quality, which is seen as a significant flaw of fluidized bed drying. Due to this lack of consensus, there is a great need to review this drying technology objectively. Therefore, this review article explores fluidized bed drying and details its advantages and disadvantages related to rice drying. It also sheds light on the effects of the operating parameters involved in fluidized bed drying, i.e., rice moisture content, drying temperature, airflow rate, air velocity, drying duration, and tempering duration, on dryer performance and rice quality. Several fluidized bed numerical models are also reviewed and evaluated. Additionally, this review explores the energy and exergy efficiencies of fluidized bed dryers and suggests opportunities for research associated with fluidized bed drying of rice. Keywords: Energy, Exergy, Fluidized bed drying, Fluidized bed modeling, Moisture content, Rice quality, Rough rice, Tempering.


Author(s):  
SOJI S ◽  
ARUN JL

Objective: The objective was to develop buccal patches of an antihypertensive drug and losartan potassium using jackfruit polymer for sustained buccal delivery. Methods: The patches were prepared by the solvent casting method. Five formulations were developed with varying concentrations of jackfruit polymer. USP type II apparatus was used to perform in-vitro release study under perfect sink condition. Buccal formulations were developed to a satisfactory level in terms of drug release, bioadhesive strength, content uniformity, moisture content, surface pH, thickness, and stability study. Results: From the results obtained F5 was found as best formulation, having appropriate folding endurance greater than 300, moisture content of 1.14±0.03 percentage (%), moisture uptake of 6.21±0.12%, swelling index (62.78%), bioadhesion strength (37.62±0.25 g), and bioadhesion time of 9 h 5 min. Fourier-transform infrared spectroscopy studies have shown no interactions between drug and polymer. All the formulations followed zero-order kinetics. Conclusion: It can be concluded that mucoadhesive buccal patches of losartan potassium using jackfruit polymer are an auspicious dosage form to prolong the release of drug and enhance its poor oral bioavailability.


2020 ◽  
Vol 72 (9-10) ◽  
pp. 1900228 ◽  
Author(s):  
Manolo Gonzalez ◽  
Jose Alvarez‐Ramirez ◽  
E. Jaime Vernon‐Carter ◽  
Isabel Reyes ◽  
Lurdes Alvarez‐Poblano

2018 ◽  
Vol 192 ◽  
pp. 03023
Author(s):  
Natthacha Chaloeichitratham ◽  
Pornkanya Mawilai ◽  
Thadchapong Pongsuttiyakorn ◽  
Pimpen Pornchalermpong

In this study, the effects of two drying methods: hot-air and freeze drying for Thai green curry paste in a terms of drying time and qualities have been investigated. The hot-air drying was carried out in tray dryer at temperature of 50, 60 and 70 °C. The freeze drying was carried out in freeze dryer at freezing temperature of -20°C, primary drying temperature of -10°C and secondary drying temperature of 50°C. Moisture content, water activity, colour, bulk density, and total phenolic content (TPC) were determined in samples. Freeze dried sample had significantly (p<0.05) lower moisture content, water activity, bulk density, total colour difference and browning index than hot air dried samples. For antioxidant activity, the results showed hot-air drying at 70°C effected highest TPC similar to freeze drying.


2011 ◽  
Vol 17 (4) ◽  
pp. 319-330 ◽  
Author(s):  
R. Pedreschi ◽  
I. Betalleluz-Pallardel ◽  
R. Chirinos ◽  
C. Curotto ◽  
D. Campos

The influence of different cooking regimes such as boiling, oven, microwave and hot-air drying on the retention of total phenolics (TP), total carotenoids (TC) and in vitro antioxidant capacity (AC) for three colored arracacha roots was studied. Continuous losses of TP, TC and AC during the course of the different cooking processes were observed. Boiling at 99.5° C for 20 min turned to be the best method to cook this root due to a high retention of TP, TC and AC in comparison to oven cooking at 200° C for 45 min and microwave cooking at 800 W for 5 min. During boiling, chlorogenic and caffeic acids and derivatives remained relatively stable. The drying temperature was negatively correlated to the residual content of TP and AC for the yellow and cream arracacha roots, but for the cream/purple arracacha variety, blanching preserved the TP and AC. Significant losses in chlorogenic and caffeic acids and derivatives were mainly observed during hot-air drying. These results suggested that TP are responsible to a large extent of the AC displayed by arracacha root during the different evaluated cooking regimes.


Sign in / Sign up

Export Citation Format

Share Document