scholarly journals Adipose-Derived Stem Cells of Blind Mole Rat Spalax Exhibit Reduced Homing Ability: Molecular Mechanisms and Potential Role in Cancer Suppression

Stem Cells ◽  
2018 ◽  
Vol 36 (10) ◽  
pp. 1630-1642 ◽  
Author(s):  
Anatolii Mamchur ◽  
Eva Leman ◽  
Safaa Salah ◽  
Aaron Avivi ◽  
Imad Shams ◽  
...  
2021 ◽  
Author(s):  
Jiong Zhou ◽  
Ji-Yang Shen ◽  
Li-En Tao ◽  
Huan Chen

Abstract Background: Keloids represent the dysregulation of cutaneous wound healing caused by aberrant fibroblast activities. Adipose-derived stem cells have been recognized as a promising treatment for keloids. However, their molecular mechanisms have not been fully elucidated. Methods: Skin biopsies were obtained from 10 keloid patients and 9 healthy volunteers. Fibroblasts isolated from all samples were divided into 2 groups, one co-cultured with adipose-derived stem cells, the other growing independently. Between each group, we compared the wound healing rate, fibroblasts’ survival rate, apoptosis rates, mRNA expressions and protein level of Col-1, Col-3, CTGF, P-4-HB. Results: In our research, no significant differences between normal fibroblasts and keloid fibroblasts in terms of wound-healing rate, survival rate, or apoptosis rate were found at the baseline. Adipose-derived stem cells strongly suppressed keloid fibroblasts’ proliferative and invasive behavior, but negatively regulated keloid fibroblast apoptosis. The further measurement of key components in keloid formation showed that adipose-derived stem cells upregulated Col-3 and CTGF levels in normal fibroblasts but downregulated protein expression of CTGF and P-4-HB in keloid fibroblasts. Conclusions: Adipose-derived stem cells had the potential to serve as a promising alternative for keloid treatment.


2020 ◽  
Vol 9 (4) ◽  
pp. 991 ◽  
Author(s):  
Elizabeth Brett ◽  
Matthias Sauter ◽  
Éadaoin Timmins ◽  
Omid Azimzadeh ◽  
Michael Rosemann ◽  
...  

The triple-negative breast tumor boundary is made of aligned, linear collagen. The pro-oncogenic impact of linear collagen is well established; however, its mechanism of formation is unknown. An in vitro analogue of the tumor border is created by a co-culture of MDA-MB-231 cells, adipose derived stem cells, and dermal fibroblasts. Decellularization of this co-culture after seven days reveals an extracellular matrix that is linear in fashion, high in pro-oncogenic collagen type VI, and able to promote invasion of reseeded cells. Further investigation revealed linear collagen VI is produced by fibroblasts in response to a paracrine co-culture of adipose derived stem cells and MDA-MB-231, which together secrete high levels of the chemokine CCL5. The addition of monoclonal antibody against CCL5 to the co-culture results in an unorganized matrix with dramatically decreased collagen VI. Importantly, reseeded cells do not exhibit pro-oncogenic behavior. These data illustrate a cellular mechanism, which creates linear extracellular matrix (ECM) in vitro, and highlight a potential role of CCL5 for building striated tumor collagen in vivo.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Luisa Vicari ◽  
Giovanna Calabrese ◽  
Stefano Forte ◽  
Raffaella Giuffrida ◽  
Cristina Colarossi ◽  
...  

Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7544 ◽  
Author(s):  
Kana Chen ◽  
Shujie Xie ◽  
Wujun Jin

Background Injection of adipose-derived stem cells (ASCs) is a promising treatment for facial contour deformities. However, its treatment mechanisms remain largely unknown. The study aimed to explain the molecular mechanisms of adipogenic differentiation from ASCs based on the roles of long noncoding RNAs (lncRNAs). Methods Datasets of mRNA–lncRNA (GSE113253) and miRNA (GSE72429) expression profiling were collected from Gene Expression Omnibus database. The differentially expressed genes (DEGs), lncRNAs (DELs) and miRNAs (DEMs) between undifferentiated and adipocyte differentiated human ASCs were identified using the Linear Models for Microarray Data method. DELs related co-expression and competing endogenous RNA (ceRNA) networks were constructed. Protein–protein interaction (PPI) analysis was performed to screen crucial target genes. Results A total of 748 DEGs, 17 DELs and 51 DEMs were identified. A total of 13 DELs and 279 DEGs with Pearson correlation coefficients > 0.9 and p-value < 0.01 were selected to construct the co-expression network. A total of 151 interaction pairs among 112 nodes (10 DEMs; eight DELs; 94 DEGs) were obtained to construct the ceRNA network. By comparing the lncRNAs and mRNAs in two networks, five lncRNAs (SNHG9, LINC02202, UBAC2-AS1, PTCSC3 and myocardial infarction associated transcript (MIAT)) and 32 genes (i.e., such as phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), protein tyrosine phosphatase receptor type B (PTPRB)) were found to be shared. PPI analysis demonstrated PIK3R1 , forkhead box O1 (FOXO1; a transcription factor) and estrogen receptor 1 (ESR1) were hub genes, which could be regulated by the miRNAs that interacted with the above five lncRNAs, such as LINC02202-miR-136-5p-PIK3R1, LINC02202-miR-381-3p-FOXO1 and MIAT-miR-18a-5p-ESR1. LINC02202 also could directly co-express with PIK3R1. Furthermore, PTPRB was predicted to be modulated by co-expression with LINC01119. Conclusion MIAT, LINC02202 and LINC01119 may be potentially important, new lncRNAs associated with adipogenic differentiation of ASCs. They may be involved in adipogenesis by acting as a ceRNA or co-expressing with their targets.


Skull Base ◽  
2005 ◽  
Vol 15 (S 2) ◽  
Author(s):  
Stefan Lendeckel ◽  
A. Jödicke ◽  
P. Christophis ◽  
K. Heidinger ◽  
H.-P. Howaldt

Sign in / Sign up

Export Citation Format

Share Document