Coelomomyces stegomyiae Infection in Adult Female Aedes aegypti Following the First, Second, and Third Host Blood Meals

2000 ◽  
Vol 75 (4) ◽  
pp. 292-295 ◽  
Author(s):  
C.J. Lucarotti ◽  
M.A. Shoulkamy
1988 ◽  
Vol 66 (5) ◽  
pp. 877-884 ◽  
Author(s):  
Christopher J. Lucarotti ◽  
Marina B. Klein

Coelomomyces stegomyiae (Chytridiomycetes, Blastocladiales) infection in adult female Aedes aegypti (Diptera, Culicidae) is located primarily in the ovaries. Fungal hyphae do not penetrate the germaria or follicles but instead lie between the tunica propria and epithelial sheath within each ovariole and between the epithelial sheath and the peritoneal sheath of the ovary. Aedes aegypti is an anautogenous mosquito requiring a blood meal for egg development; similarly, fungal hyphae in infected ovaries will not differentiate to form resting sporangia until after the mosquito has taken a blood meal. The fungus restricts receptor-mediated endocytosis of vitellogenin by the plasma membrane of the oocyte so that few, if any, vitellin yolk granules form. Thick-walled resting sporangia have formed 72 h after the blood meal has been taken and these will be oviposited by the females in place of the aborted eggs.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Matthew W. Hopken ◽  
Limarie J. Reyes-Torres ◽  
Nicole Scavo ◽  
Antoinette J. Piaggio ◽  
Zaid Abdo ◽  
...  

Urban ecosystems are a patchwork of habitats that host a broad diversity of animal species. Insects comprise a large portion of urban biodiversity which includes many pest species, including those that transmit pathogens. Mosquitoes (Diptera: Culicidae) inhabit urban environments and rely on sympatric vertebrate species to complete their life cycles, and in this process transmit pathogens to animals and humans. Given that mosquitoes feed upon vertebrates, they can also act as efficient samplers that facilitate detection of vertebrate species that utilize urban ecosystems. In this study, we analyzed DNA extracted from mosquito blood meals collected temporally in multiple neighborhoods of the San Juan Metropolitan Area, Puerto Rico to evaluate the presence of vertebrate fauna. DNA was collected from 604 individual mosquitoes that represented two common urban species, Culex quinquefasciatus (n = 586) and Aedes aegypti (n = 18). Culex quinquefasciatus fed on 17 avian taxa (81.2% of blood meals), seven mammalian taxa (17.9%), and one reptilian taxon (0.85%). Domestic chickens dominated these blood meals both temporally and spatially, and no statistically significant shift from birds to mammals was detected. Aedes aegypti blood meals were from a less diverse group, with two avian taxa (11.1%) and three mammalian taxa (88.9%) identified. The blood meals we identified provided a snapshot of the vertebrate community in the San Juan Metropolitan Area and have potential implications for vector-borne pathogen transmission.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Horst Onken ◽  
Yolana Fuks ◽  
Melanie Valencia ◽  
Stacia B Moffett ◽  
David F Moffett

2017 ◽  
Vol 115 (2) ◽  
pp. 361-366 ◽  
Author(s):  
Lauren B. Carrington ◽  
Bich Chau Nguyen Tran ◽  
Nhat Thanh Hoang Le ◽  
Tai Thi Hue Luong ◽  
Truong Thanh Nguyen ◽  
...  

The wMel strain of Wolbachia can reduce the permissiveness of Aedes aegypti mosquitoes to disseminated arboviral infections. Here, we report that wMel-infected Ae. aegypti (Ho Chi Minh City background), when directly blood-fed on 141 viremic dengue patients, have lower dengue virus (DENV) transmission potential and have a longer extrinsic incubation period than their wild-type counterparts. The wMel-infected mosquitoes that are field-reared have even greater relative resistance to DENV infection when fed on patient-derived viremic blood meals. This is explained by an increased susceptibility of field-reared wild-type mosquitoes to infection than laboratory-reared counterparts. Collectively, these field- and clinically relevant findings support the continued careful field-testing of wMel introgression for the biocontrol of Ae. aegypti-born arboviruses.


Author(s):  
Tarsis Tamar Pereira Silva ◽  
Aurea Vieira Teixeira ◽  
Alexandre de Almeida e Silva

Abstract In the search for new strategies to control Aedes aegypti Linnaeus (Diptera: Culicidae), several studies have successfully related pyriproxyfen (PPF) tarsal transference to breeding sites (autodissemination), as well as the sterilization potential of females exposed to PPF. Potential PPF autodissemination by mosquito feces after the ingestion of sugar baits has also been proposed. Therefore, the present work evaluated several parameters, e.g., fecal production, residuality under dry and aqueous conditions, PPF excretion affecting emergence inhibition (EI) by fecal deposits of Ae. aegypti fed with attractive toxic sugar baits (ATSBs) containing PPF as well as their reproductive potential. Females were fed with ATSBs offered as droplets and the feces were collected using filter paper and transferred to plastic cups with L3 larvae to evaluate EI. The residual effect of feces in aqueous and dry conditions and PPF excretion on EI was obtained by keeping the feces in water or dried for different time intervals and using feces collected at 24-h intervals, respectively. Females received a bloodmeal after feeding on ATSBs, eggs and larval counting expressed the reproductive potential. The fecal mass was not affected by PPF concentration, but EI increased from 33 to 54% as the PPF concentration increased. The PPF excretion in the feces exceeded 96 h. The residual effect in the EI for feces kept in water was reduced by more than 60% after 30 d but was not affected under dry conditions. The fecundity and fertility of the females were reduced up to 51% and 97%, respectively.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 695 ◽  
Author(s):  
Antoine Boullis ◽  
Nadège Cordel ◽  
Cécile Herrmann-Storck ◽  
Anubis Vega-Rúa

The pandemic emergence of several mosquito-borne viruses highlights the need to understand the different ways in which they can be transmitted by vectors to human hosts. In this study, we evaluated the propensity of Aedes aegypti to transmit mechanically Zika virus (ZIKV) using an experimental design. Mosquitoes were allowed to feed on ZIKV-infected blood and were then rapidly transferred to feed on ZIKV-free blood until they finished their meal. The uninfected blood meals, the mosquito abdomens, as well as the mouthparts dissected from fully and partially engorged mosquitoes were analyzed using RT-qPCR and/or virus titration. All the fully engorged mosquito abdomens were ZIKV-infected, whereas their mouthparts were all ZIKV-negative. Nonetheless, one of the partially engorged mosquitoes carried infectious particles on mouthparts. No infectious virus was found in the receiver blood meals, while viral RNA was detected in 9% of the samples (2/22). Thus, mechanical transmission of ZIKV may sporadically occur via Ae. aegypti bite. However, as the number of virions detected on mouthparts (2 particles) is not sufficient to induce infection in a naïve host, our results indicate that mechanical transmission does not impact ZIKV epidemiology.


1976 ◽  
Vol 66 (4) ◽  
pp. 671-679 ◽  
Author(s):  
P. F. L. Boreham ◽  
J. K. Lenahan

AbstractTwo techniques have been developed to investigate the incidence of multiple feeding by mosquitoes. One system detects the ABO blood group substances and can be used up to 24 h after feeding in the case of Anopheles stephensi List. and 30 h for Aedes aegypti (L.). It is limited by cross-reactions which develop between blood group substances as digestion occurs in the stomach of the mosquito. The second system detects the serum protein haptoglobins (Hp) and it is possible to detect the Hp type of blood in single feeds 20 h after feeding for Ae. aegypti and 16 h for A. stephensi. Multiple feeds taken within a short time of each other can be identified up to 16 h after completion of the meal. The minimum amount of blood necessary to effect an identification in a fresh two-part meal is 0·1 mg, which is approximately one-tenth of the total amount of blood taken. It is now therefore possible to measure multiple ‘cryptic meals’ taken from man, if they are of different Hp types. Identification of Hp from A. gambiae sp. A blood-meals has been successfully carried out using material sent from the tropics. Limitations of the techniques as applied to field collections are discussed.


1997 ◽  
Vol 27 (4) ◽  
pp. 283-289 ◽  
Author(s):  
Qijiao Jiang ◽  
Martin Hall ◽  
Fernando G. Noriega ◽  
Michael Wells

Sign in / Sign up

Export Citation Format

Share Document