Duration of Last Interglacial Conditions in Northwestern Greece

2002 ◽  
Vol 58 (1) ◽  
pp. 53-55 ◽  
Author(s):  
Polychronis C. Tzedakis ◽  
Michael R. Frogley ◽  
Timothy H.E. Heaton

AbstractA new astronomical calibration method for long pollen records from southern Europe is applied to the last interglacial interval of the Ioannina sequence, northwestern Greece. This shows that the last interglacial in this region, as defined by the presence of forest communities, lasted ca. 15,500 yr, from 127,300 to 111,800 yr B.P. Interglacial conditions developed within marine isotope substage (MIS) 5e and persisted into MIS 5d, lagging changes in global ice volume.

2002 ◽  
Vol 58 (1) ◽  
pp. 2-13 ◽  
Author(s):  
George J. Kukla ◽  
Michael L. Bender ◽  
Jacques-Louis de Beaulieu ◽  
Gerard Bond ◽  
Wallace S. Broecker ◽  
...  

AbstractThe last interglacial, commonly understood as an interval with climate as warm or warmer than today, is represented by marine isotope stage (MIS) 5e, which is a proxy record of low global ice volume and high sea level. It is arbitrarily dated to begin at approximately 130,000 yr B.P. and end at 116,000 yr B.P. with the onset of the early glacial unit MIS 5d. The age of the stage is determined by correlation to uranium–thorium dates of raised coral reefs. The most detailed proxy record of interglacial climate is found in the Vostok ice core where the temperature reached current levels 132,000 yr ago and continued rising for another two millennia. Approximately 127,000 yr ago the Eemian mixed forests were established in Europe. They developed through a characteristic succession of tree species, probably surviving well into the early glacial stage in southern parts of Europe. After ca. 115,000 yr ago, open vegetation replaced forests in northwestern Europe and the proportion of conifers increased significantly farther south. Air temperature at Vostok dropped sharply. Pulses of cold water affected the northern North Atlantic already in late MIS 5e, but the central North Atlantic remained warm throughout most of MIS 5d. Model results show that the sea surface in the eastern tropical Pacific warmed when the ice grew and sea level dropped. The essentially interglacial conditions in southwestern Europe remained unaffected by ice buildup until late MIS 5d when the forests disappeared abruptly and cold water invaded the central North Atlantic ca. 107,000 yr ago.


2002 ◽  
Vol 58 (1) ◽  
pp. 32-35 ◽  
Author(s):  
George J. Kukla ◽  
Jacques-Louis de Beaulieu ◽  
Helena Svobodova ◽  
Valerie Andrieu-Ponel ◽  
Nicolas Thouveny ◽  
...  

AbstractEemian lake deposits in Grande Pile and Ribains, France, correlate with marine isotope substages (MIS) 5e and 5d as delimited in two pollen-bearing deep-sea cores off Portugal. The Eemian forests in France lasted for approximately 20 millennia, from at least 126,000 to ca. 107,000 yr B.P. Oscillatory climate deteriorations began about 115,000 yr ago. An intense cold spell affected the region approximately 110,000 yr ago.


1999 ◽  
Vol 51 (3) ◽  
pp. 215-219 ◽  
Author(s):  
Jun Chen ◽  
Zhisheng An ◽  
John Head

AbstractRb, Sr, and magnetic susceptibility have been measured in the last interglacial–glacial loess profiles at Luochuan and Huanxian, central China. A high degree of similarity between the parameters in both profiles suggests that variations of Rb/Sr ratios in the sequence can be regarded as an indicator of East Asian summer monsoon strength. Matching the Rb/Sr record with the SPECMAP δ18O curve suggests that the Rb/Sr ratio responds sensitively to changes of the East Asian monsoon induced by global ice-volume variation.


1984 ◽  
Vol 21 (2) ◽  
pp. 123-224 ◽  
Author(s):  
Rose Marie L. Cline ◽  
James D. Hays ◽  
Warren L. Prell ◽  
William F. Ruddiman ◽  
Ted C. Moore ◽  
...  

The final effort of the CLIMAP project was a study of the last interglaciation, a time of minimum ice volume some 122,000 yr ago coincident with the Substage 5e oxygen isotopic minimum. Based on detailed oxygen isotope analyses and biotic census counts in 52 cores across the world ocean, last interglacial sea-surface temperatures (SST) were compared with those today. There are small SST departures in the mid-latitude North Atlantic (warmer) and the Gulf of Mexico (cooler). The eastern boundary currents of the South Atlantic and Pacific oceans are marked by large SST anomalies in individual cores, but their interpretations are precluded by no-analog problems and by discordancies among estimates from different biotic groups. In general, the last interglacial ocean was not significantly different from the modern ocean. The relative sequencing of ice decay versus oceanic warming on the Stage 6/5 oxygen isotopic transition and of ice growth versus oceanic cooling on the Stage 5e/5d transition was also studied. In most of the Southern Hemisphere, the oceanic response marked by the biotic census counts preceded (led) the global ice-volume response marked by the oxygen-isotope signal by several thousand years. The reverse pattern is evident in the North Atlantic Ocean and the Gulf of Mexico, where the oceanic response lagged that of global ice volume by several thousand years. As a result, the very warm temperatures associated with the last interglaciation were regionally diachronous by several thousand years. These regional lead-lag relationships agree with those observed on other transitions and in long-term phase relationships; they cannot be explained simply as artifacts of bioturbational translations of the original signals.


2021 ◽  
Vol 9 (3) ◽  
pp. 253
Author(s):  
Liang Yi ◽  
Haifeng Wang ◽  
Xiguang Deng ◽  
Haifan Yuan ◽  
Dong Xu ◽  
...  

Seamounts are ubiquitous topographic units in the global ocean, and their effects on local circulation have attracted great research attention in physical oceanography; however, fewer relevant efforts were made on geological timescales in previous studies. The Caiwei (Pako) Guyot in the Magellan Seamounts of the western Pacific is a typical seamount and oceanographic characteristics have been well documented. In this study, we investigate a sediment core by geochronological and geochemical studies to reveal a topography-induce surface-to-bottom linkage. The principal results are as follows: (1) Two magnetozones are recognized in core MABC–11, which can be correlated to the Brunhes and Matuyama chrons; (2) Elements Ca, Si, Cl, K, Mn, Ti, and Fe are seven elements with high intensities by geochemical scanning; (3) Ca intensity can be tuned to global ice volume to refine the age model on glacial-interglacial timescales; (4) The averaged sediment accumulation rate is ~0.73 mm/kyr, agreeing with the estimate of the excess 230Th data in the upper part. Based on these results, a proxy of element Mn is derived, whose variability can be correlated with changes in global ice volume and deep-water masses on glacial-interglacial timescales. This record is also characterized by an evident 23-kyr cycle, highlighting a direct influence of solar insolation on deep-sea sedimentary processes. Overall, sedimentary archives of the Caiwei Guyot not only record an intensified abyssal ventilation during interglaciations in the western Pacific, but also provide a unique window for investigating the topography-induced linkage between the upper and bottom ocean on orbital timescales.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 470
Author(s):  
Martha Charitonidou ◽  
Konstantinos Kougioumoutzis ◽  
John M. Halley

Climate change is regarded as one of the most important threats to plants. Already species around the globe are showing considerable latitudinal and altitudinal shifts. Helen’s bee orchid (Ophrys helenae), a Balkan endemic with a distribution center in northwestern Greece, is reported to be expanding east and southwards. Since this southeastern movement goes against the usual expectations, we investigated via Species Distribution Modelling, whether this pattern is consistent with projections based on the species’ response to climate change. We predicted the species’ future distribution based on three different climate models in two climate scenarios. We also explored the species’ potential distribution during the Last Interglacial and the Last Glacial Maximum. O. helenae is projected to shift mainly southeast and experience considerable area changes. The species is expected to become extinct in the core of its current distribution, but to establish a strong presence in the mid- and high-altitude areas of the Central Peloponnese, a region that could have provided shelter in previous climatic extremes.


2008 ◽  
Vol 4 (4) ◽  
pp. 205-213 ◽  
Author(s):  
S.-Y. Lee ◽  
C. J. Poulsen

Abstract. Pleistocene benthic δ18O records exhibit strong spectral power at ~41 kyr, indicating that global ice volume has been modulated by Earth's axial tilt. This feature, and weak spectral power in the precessional band, has been attributed to the influence of obliquity on mean annual and seasonal insolation gradients at high latitudes. In this study, we use a coupled ocean-atmosphere general circulation model to quantify changes in continental snowfall associated with mean annual and seasonal insolation forcing due to a change in obliquity. Our model results indicate that insolation changes associated with a decrease in obliquity amplify continental snowfall in three ways: (1) Local reductions in air temperature enhance precipitation as snowfall. (2) An intensification of the winter meridional insolation gradient strengthens zonal circulation (e.g. the Aleutian low), promoting greater vapor transport from ocean to land and snow precipitation. (3) An increase in the summer meridional insolation gradient enhances summer eddy activity, increasing vapor transport to high-latitude regions. In our experiments, a decrease in obliquity leads to an annual snowfall increase of 25.0 cm; just over one-half of this response (14.1 cm) is attributed to seasonal changes in insolation. Our results indicate that the role of insolation gradients is important in amplifying the relatively weak insolation forcing due to a change in obliquity. Nonetheless, the total snowfall response to obliquity is similar to that due to a shift in Earth's precession, suggesting that obliquity forcing alone can not account for the spectral characteristics of the ice-volume record.


2021 ◽  
Vol 13 (1) ◽  
pp. 171-197
Author(s):  
Evan J. Gowan ◽  
Alessio Rovere ◽  
Deirdre D. Ryan ◽  
Sebastian Richiano ◽  
Alejandro Montes ◽  
...  

Abstract. Coastal southeast South America is one of the classic locations where there are robust, spatially extensive records of past high sea level. Sea-level proxies interpreted as last interglacial (Marine Isotope Stage 5e, MIS 5e) exist along the length of the Uruguayan and Argentinian coast with exceptional preservation especially in Patagonia. Many coastal deposits are correlated to MIS 5e solely because they form the next-highest terrace level above the Holocene highstand; however, dating control exists for some landforms from amino acid racemization, U∕Th (on molluscs), electron spin resonance (ESR), optically stimulated luminescence (OSL), infrared stimulated luminescence (IRSL), and radiocarbon dating (which provides minimum ages). As part of the World Atlas of Last Interglacial Shorelines (WALIS) database, we have compiled a total of 60 MIS 5 proxies attributed, with various degrees of precision, to MIS 5e. Of these, 48 are sea-level indicators, 11 are marine-limiting indicators (sea level above the elevation of the indicator), and 1 is terrestrial limiting (sea level below the elevation of the indicator). Limitations on the precision and accuracy of chronological controls and elevation measurements mean that most of these indicators are considered to be low quality. The database is available at https://doi.org/10.5281/zenodo.3991596 (Gowan et al., 2020).


Sign in / Sign up

Export Citation Format

Share Document