Using Rough Set to Reduce SVM Classifier Complexity and Its Use in SARS Data Set

Author(s):  
Feng Honghai ◽  
Liu Baoyan ◽  
Yin Cheng ◽  
Li Ping ◽  
Yang Bingru ◽  
...  
Keyword(s):  
Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


2021 ◽  
Vol 13 (19) ◽  
pp. 3956
Author(s):  
Shan He ◽  
Huaiyong Shao ◽  
Wei Xian ◽  
Shuhui Zhang ◽  
Jialong Zhong ◽  
...  

Hilly areas are important parts of the world’s landscape. A marginal phenomenon can be observed in some hilly areas, leading to serious land abandonment. Extracting the spatio-temporal distribution of abandoned land in such hilly areas can protect food security, improve people’s livelihoods, and serve as a tool for a rational land plan. However, mapping the distribution of abandoned land using a single type of remote sensing image is still challenging and problematic due to the fragmentation of such hilly areas and severe cloud pollution. In this study, a new approach by integrating Linear stretch (Ls), Maximum Value Composite (MVC), and Flexible Spatiotemporal DAta Fusion (FSDAF) was proposed to analyze the time-series changes and extract the spatial distribution of abandoned land. MOD09GA, MOD13Q1, and Sentinel-2 were selected as the basis of remote sensing images to fuse a monthly 10 m spatio-temporal data set. Three pieces of vegetation indices (VIs: ndvi, savi, ndwi) were utilized as the measures to identify the abandoned land. A multiple spatio-temporal scales sample database was established, and the Support Vector Machine (SVM) was used to extract abandoned land from cultivated land and woodland. The best extraction result with an overall accuracy of 88.1% was achieved by integrating Ls, MVC, and FSDAF, with the assistance of an SVM classifier. The fused VIs image set transcended the single source method (Sentinel-2) with greater accuracy by a margin of 10.8–23.6% for abandoned land extraction. On the other hand, VIs appeared to contribute positively to extract abandoned land from cultivated land and woodland. This study not only provides technical guidance for the quick acquirement of abandoned land distribution in hilly areas, but it also provides strong data support for the connection of targeted poverty alleviation to rural revitalization.


GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaofu Huang ◽  
Ming Chen ◽  
Peizhong Liu ◽  
Yongzhao Du

Prostate cancer is one of the most common cancers in men. Early detection of prostate cancer is the key to successful treatment. Ultrasound imaging is one of the most suitable methods for the early detection of prostate cancer. Although ultrasound images can show cancer lesions, subjective interpretation is not accurate. Therefore, this paper proposes a transrectal ultrasound image analysis method, aiming at characterizing prostate tissue through image processing to evaluate the possibility of malignant tumours. Firstly, the input image is preprocessed by optical density conversion. Then, local binarization and Gaussian Markov random fields are used to extract texture features, and the linear combination is performed. Finally, the fused texture features are provided to SVM classifier for classification. The method has been applied to data set of 342 transrectal ultrasound images obtained from hospitals with an accuracy of 70.93%, sensitivity of 70.00%, and specificity of 71.74%. The experimental results show that it is possible to distinguish cancerous tissues from noncancerous tissues to some extent.


2018 ◽  
Vol 6 (2) ◽  
pp. 69-92 ◽  
Author(s):  
Asanka G. Perera ◽  
Yee Wei Law ◽  
Ali Al-Naji ◽  
Javaan Chahl

Purpose The purpose of this paper is to present a preliminary solution to address the problem of estimating human pose and trajectory by an aerial robot with a monocular camera in near real time. Design/methodology/approach The distinguishing feature of the solution is a dynamic classifier selection architecture. Each video frame is corrected for perspective using projective transformation. Then, a silhouette is extracted as a Histogram of Oriented Gradients (HOG). The HOG is then classified using a dynamic classifier. A class is defined as a pose-viewpoint pair, and a total of 64 classes are defined to represent a forward walking and turning gait sequence. The dynamic classifier consists of a Support Vector Machine (SVM) classifier C64 that recognizes all 64 classes, and 64 SVM classifiers that recognize four classes each – these four classes are chosen based on the temporal relationship between them, dictated by the gait sequence. Findings The solution provides three main advantages: first, classification is efficient due to dynamic selection (4-class vs 64-class classification). Second, classification errors are confined to neighbors of the true viewpoints. This means a wrongly estimated viewpoint is at most an adjacent viewpoint of the true viewpoint, enabling fast recovery from incorrect estimations. Third, the robust temporal relationship between poses is used to resolve the left-right ambiguities of human silhouettes. Originality/value Experiments conducted on both fronto-parallel videos and aerial videos confirm that the solution can achieve accurate pose and trajectory estimation for these different kinds of videos. For example, the “walking on an 8-shaped path” data set (1,652 frames) can achieve the following estimation accuracies: 85 percent for viewpoints and 98.14 percent for poses.


2018 ◽  
Vol 15 (2) ◽  
pp. 558-575
Author(s):  
A. Anto Spiritus Kingsly ◽  
B. Sankaragomathi

Melanoma cancer is the most injurious form of cancer which affects the human. Skin cancer has quickly increased in western part of the country among the world. In this paper, diagnosing melanoma in premature stages a detection system has been designed which contains the following digital image processing techniques. First, dermoscopy image of skin is taken, and it is subjected to the pre-processing step for noise removal and post-processing step for image enhancement. Then the processed image undergoes image segmentation using Otsu method and Morphological processing. Second, features are extracted using feature extraction technique-ABCD parameter, GLCM, and FOS. Various feature combinations are given as the input to the KNN, SVM, ANN and Bag of Visual Words classifiers. KNN classifier is used to classify the data set into two classes, SVM classifier is used to classify the data set into three classes, ANN classifier is used to classify the data set based on the number of layers and Bag of Visual Words are used to classify the data set into two classes. Performance is analyzed based on the accuracy of the learning classifier output.


2019 ◽  
Vol 12 (4) ◽  
pp. 466-480
Author(s):  
Li Na ◽  
Xiong Zhiyong ◽  
Deng Tianqi ◽  
Ren Kai

Purpose The precise segmentation of brain tumors is the most important and crucial step in their diagnosis and treatment. Due to the presence of noise, uneven gray levels, blurred boundaries and edema around the brain tumor region, the brain tumor image has indistinct features in the tumor region, which pose a problem for diagnostics. The paper aims to discuss these issues. Design/methodology/approach In this paper, the authors propose an original solution for segmentation using Tamura Texture and ensemble Support Vector Machine (SVM) structure. In the proposed technique, 124 features of each voxel are extracted, including Tamura texture features and grayscale features. Then, these features are ranked using the SVM-Recursive Feature Elimination method, which is also adopted to optimize the parameters of the Radial Basis Function kernel of SVMs. Finally, the bagging random sampling method is utilized to construct the ensemble SVM classifier based on a weighted voting mechanism to classify the types of voxel. Findings The experiments are conducted over a sample data set to be called BraTS2015. The experiments demonstrate that Tamura texture is very useful in the segmentation of brain tumors, especially the feature of line-likeness. The superior performance of the proposed ensemble SVM classifier is demonstrated by comparison with single SVM classifiers as well as other methods. Originality/value The authors propose an original solution for segmentation using Tamura Texture and ensemble SVM structure.


2018 ◽  
Vol 7 (2) ◽  
pp. 75-84 ◽  
Author(s):  
Shivam Shreevastava ◽  
Anoop Kumar Tiwari ◽  
Tanmoy Som

Feature selection is one of the widely used pre-processing techniques to deal with large data sets. In this context, rough set theory has been successfully implemented for feature selection of discrete data set but in case of continuous data set it requires discretization, which may cause information loss. Fuzzy rough set theory approaches have also been used successfully to resolve this issue as it can handle continuous data directly. Moreover, almost all feature selection techniques are used to handle homogeneous data set. In this article, the center of attraction is on heterogeneous feature subset reduction. A novel intuitionistic fuzzy neighborhood models have been proposed by combining intuitionistic fuzzy sets and neighborhood rough set models by taking an appropriate pair of lower and upper approximations and generalize it for feature selection, supported with theory and its validation. An appropriate algorithm along with application to a data set has been added.


2020 ◽  
Vol 39 (3) ◽  
pp. 4473-4489
Author(s):  
H.I. Mustafa ◽  
O.A. Tantawy

Attribute reduction is considered as an important processing step for pattern recognition, machine learning and data mining. In this paper, we combine soft set and rough set to use them in applications. We generalize rough set model and introduce a soft metric rough set model to deal with the problem of heterogeneous numerical feature subset selection. We construct a soft metric on the family of knowledge structures based on the soft distance between attributes. The proposed model will degrade to the classical one if we specify a zero soft real number. We also provide a systematic study of attribute reduction of rough sets based on soft metric. Based on the constructed metric, we define co-information systems and consistent co-decision systems, and we provide a new method of attribute reductions of each system. Furthermore, we present a judgement theorem and discernibility matrix associated with attribute of each type of system. As an application, we present a case study from Zoo data set to verify our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document