The Effect of Silane Treatment of AlxGa1−xN Surfaces

Author(s):  
N Ketteniss ◽  
M J Kappers ◽  
C McAleese ◽  
R A Oliver
Keyword(s):  
2021 ◽  
pp. 1-12
Author(s):  
M. Ramesh ◽  
L. Rajeshkumar ◽  
C. Deepa ◽  
M. Tamil Selvan ◽  
Vinod Kushvaha ◽  
...  

2016 ◽  
Vol 51 (14) ◽  
pp. 2009-2021 ◽  
Author(s):  
Mustafa Bakkal ◽  
M Safa Bodur ◽  
H Ece Sonmez ◽  
B Can Ekim

In this study, weathering effect on untreated textile fiber-reinforced polymer composites and the effect of different chemical treatments for better interfacial adhesion on the outdoor performance were investigated. Degradation of physical, mechanical, and chemical properties of textile fiber-reinforced polymer composites was evaluated through common chemical treatments such as maleated coupling, alkaline treatment, silane treatment, and alkali–silane treatment. Untreated and chemically treated textile fiber-reinforced polymer composites were subjected to water uptake and UV exposure up to 1000 h. Tensile and impact properties were mechanically examined, and the changes on the physical properties due to water uptake, swelling, and color change were investigated. In addition, Fourier transform infrared spectrum analysis was performed in order to evaluate the chemical changes after exposure.


2013 ◽  
Vol 664 ◽  
pp. 677-682
Author(s):  
Hambali Raden Siti Amirah ◽  
Ahmad Faiza Mohd ◽  
Mohd Firdaus Yhaya ◽  
Rahmah Mohamed ◽  
Mohamed Nur Raihan

The effect of different carbonizing agents; ethylene glycol, glycerol, and pentaerythritol to the char formation were studied in this research. After burning process, formulation with ethylene glycol, glycerol, and pentaerythritol showed chars thickness of 10 mm, 32 mm, and 45 mm. The chars’ strength at peak force was recorded at 3.20 N, 7.75 N, and 9.48 N while the burning rate of each sample were 5.23 x 10-4 mm/s, 4.20 x10-4 mm/s, and 6.24 x10-4 mm/s respectively. Formulation with glycerol as carbonizing agent showed the lowest burning rate as compared to the other formulations. Additional formulation with glycidyl silane as coupling agent in glycerol formulation was also studied. The formation of chemical bonding between silane, glycerol, and epoxy glycerol was confirmed by Fourier Transform Infrared (FTIR) absorption peak at 767.25 cm-1. The burning rate was 1.44 x 10-5 mm/s after silane treatment. Thermal degradation of the silane-treated resin started at 220°C as measured by thermogravimetric analysis (TGA).


2013 ◽  
Vol 39 (10) ◽  
pp. 1287-1290 ◽  
Author(s):  
Young Kyung Kim ◽  
Jun Sik Son ◽  
Kyo-Han Kim ◽  
Tae-Yub Kwon

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Aruz Petcherdchoo

This paper presents sensitivity of service life extension and CO2 emission due to silane (alkyltriethoxysilane) treatment on concrete structures under time-dependent chloride attack. The service life is predicted by the Crank–Nicolson-based finite difference approach for avoiding the complexity in solving Fick’s second law. The complexity occurs due to time-dependent chloride attack and nonconstant diffusion coefficient of concrete with silane treatment. At the application time of silane treatment, the cumulative CO2 emission is assessed. The effectiveness of silane treatment is defined as the ratio of the service life extension to the cumulative CO2 emission assessed within the corrosion-free service life. The service life extension is defined as the difference between corrosion-free service life of concrete structures without and with time-based application of silane treatment. From the study, the diffusion of chlorides in concrete with silane treatment is found to be retarded. In comparison, the strategy without deterioration of silanes during effective duration is more suitable for service life extension but less effective than that with deterioration. In the sensitivity analysis, there are up to eight parameters to be determined. The service life of concrete structures without silane treatment is most sensitive to the water-to-cement ratio and the threshold depth of concrete structures. Considering only five parameters in silane treatment strategies, the service life is most sensitive to the first application time of silane treatment. The cumulative CO2 emission is most sensitive to either the first application time of silane treatment or the amount of CO2 emission per application.


2019 ◽  
pp. 089270571989090
Author(s):  
Sedef Sismanoglu ◽  
Umit Tayfun ◽  
Yasin Kanbur

In this study, eco-grade thermoplastic polyurethane (TPU), which includes 46% renewable content, was reinforced with date palm seed (DPS). Alkali and silane surface treatments were applied to DPS to increase the compatibility between DPS and TPU matrix. The oil of DPS was removed before treatments and surface functionalities of modified and pristine DPS samples were examined by Fourier transform infrared spectroscopy. Composites were fabricated using melt blending method and injection molding processes. Test samples of composites were characterized using tensile test, hardness test, water absorption study, dynamic mechanical analysis (DMA), melt flow index (MFI) test, thermogravimetric analysis, and scanning electron microscopy (SEM). According to test results, silane treatment led to remarkable improvement for mechanical performance of composites attributed to improvement of compatibility and interface adhesion between DPS and TPU. DMA results implied that higher storage modulus and glass transition temperature were achieved for treated DPS-containing composites compared to pristine DPS filled ones. Thermal stability of flexible segment of TPU increased with the addition of DPS regardless of surface treatment. Additionally, DPS loadings caused significant increase in MFI value of unfilled TPU. Silane-treated DPS-containing composite yielded the lowest water uptake value among samples due to the hydrophobicity of silane layer. Enrichment of interface adhesion of DPS to TPU matrix was confirmed by SEM micrographs of composites. Silane-treated DPS-containing composite displayed higher results among produced composites since the increase in interfacial interactions with TPU was achieved by silane treatment for DPS surface.


Author(s):  
Samer Ghosn ◽  
Nour Cherkawi ◽  
Bilal Hamad

Abstract This paper reports on the first phase of a multi-phase research program conducted at the American University of Beirut (AUB) on “Hemp and Recycled Aggregates Concrete” (HRAC). HRAC is a new sustainable concrete material where hemp fibers are incorporated in the mix, the coarse aggregate content is reduced by 20% of the concrete volume, and 50% of the natural coarse aggregates (NCA) are replaced by recycled concrete aggregates (RCA), thus saving on natural resources and addressing the problem of waste material disposal. The effect of the new material on concrete consistency and hardened mechanical properties was studied. Also, few durability tests were conducted. Variables included percentage replacement of NCA by RCA (0 or 50%), maximum size aggregate (10 or 20 mm), hemp fiber length (20 or 30 mm), and hemp fiber treatment (alkali or silane or acetyl). Fiber characterization tests were conducted including morphology, crystallinity, and thermal analysis. The tests indicated that alkali and acetyl fiber treatments were better than the silane treatment in removing impurities on the fiber surface. Also, alkali and acetyl treatments have increased the crystallinity of the fibers while silane treatment decreased it. Results of mechanical properties tests showed that while HRAC has considerable lower compressive strength and modulus of elasticity than plain concrete, the flexural strength and splitting tensile strength are not significantly affected. The flexural stress–strain behavior of HRAC is ductile as compared to the brittle behavior of the plain concrete beams indicating positive impact on toughness and energy dissipation. The durability tests indicated that whereas HRAC mixes have higher absorption than plain concrete, they have better thermal properties and their resistance to freeze–thaw cycles is comparable to plain concrete. All test results were not significantly affected by fiber length or fiber treatment.


Author(s):  
May M.A. Abdel Latif ◽  
Nabil S.M. El Tayeb ◽  
Vishal Mahale ◽  
Jayashree Bijwe

2020 ◽  
Vol 15 ◽  
pp. 155892502095819
Author(s):  
Qianting Wang ◽  
Yu Zhang ◽  
Weikang Liang ◽  
Jianjie Wang ◽  
Youxin Chen

In this work, the surface of the bamboo fibers (BF) was treated with three kinds of silane coupling agents terminated with amino functional groups (KH550), epoxy functional groups (KH560), and methyl functional groups (KH570) to improve fiber–matrix adhesion. The effects of silane treatment on the mechanical properties and thermal behavior of BF/polypropylene (PP) composites were investigated. Mechanical test results showed that the order of modification effectiveness was KH570 > KH550 > KH560. KH570 treated fiber composite exhibited the best mechanical properties. The tensile strength and flexural strength of 5 wt% KH570 treatment reached to 36.1 and 54.7 MPa, which were 15.4% and 23.6% higher than those of UBF/PP composites. Simultaneously, the thermal stability increased from 467.0°C (UBF) to 470.6°C (KH-570 treated BF). An increase in crystallization temperature (1.7°C) and a decrease in crystallinity (5.8%) occurred upon the addition of 5% KH570 silanes treated bamboo fibers.


Sign in / Sign up

Export Citation Format

Share Document