Effect of alkali and silane surface treatments on the mechanical and physical behaviors of date palm seed-filled thermoplastic polyurethane eco-composites

2019 ◽  
pp. 089270571989090
Author(s):  
Sedef Sismanoglu ◽  
Umit Tayfun ◽  
Yasin Kanbur

In this study, eco-grade thermoplastic polyurethane (TPU), which includes 46% renewable content, was reinforced with date palm seed (DPS). Alkali and silane surface treatments were applied to DPS to increase the compatibility between DPS and TPU matrix. The oil of DPS was removed before treatments and surface functionalities of modified and pristine DPS samples were examined by Fourier transform infrared spectroscopy. Composites were fabricated using melt blending method and injection molding processes. Test samples of composites were characterized using tensile test, hardness test, water absorption study, dynamic mechanical analysis (DMA), melt flow index (MFI) test, thermogravimetric analysis, and scanning electron microscopy (SEM). According to test results, silane treatment led to remarkable improvement for mechanical performance of composites attributed to improvement of compatibility and interface adhesion between DPS and TPU. DMA results implied that higher storage modulus and glass transition temperature were achieved for treated DPS-containing composites compared to pristine DPS filled ones. Thermal stability of flexible segment of TPU increased with the addition of DPS regardless of surface treatment. Additionally, DPS loadings caused significant increase in MFI value of unfilled TPU. Silane-treated DPS-containing composite yielded the lowest water uptake value among samples due to the hydrophobicity of silane layer. Enrichment of interface adhesion of DPS to TPU matrix was confirmed by SEM micrographs of composites. Silane-treated DPS-containing composite displayed higher results among produced composites since the increase in interfacial interactions with TPU was achieved by silane treatment for DPS surface.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1886 ◽  
Author(s):  
María Samper ◽  
David Bertomeu ◽  
Marina Arrieta ◽  
José Ferri ◽  
Juan López-Martínez

Recycling polymers is common due to the need to reduce the environmental impact of these materials. Polypropylene (PP) is one of the polymers called ‘commodities polymers’ and it is commonly used in a wide variety of short-term applications such as food packaging and agricultural products. That is why a large amount of PP residues that can be recycled are generated every year. However, the current increasing introduction of biodegradable polymers in the food packaging industry can negatively affect the properties of recycled PP if those kinds of plastics are disposed with traditional plastics. For this reason, the influence that generates small amounts of biodegradable polymers such as polylactic acid (PLA), polyhydroxybutyrate (PHB) and thermoplastic starch (TPS) in the recycled PP were analyzed in this work. Thus, recycled PP was blended with biodegradables polymers by melt extrusion followed by injection moulding process to simulate the industrial conditions. Then, the obtained materials were evaluated by studding the changes on the thermal and mechanical performance. The results revealed that the vicat softening temperature is negatively affected by the presence of biodegradable polymers in recycled PP. Meanwhile, the melt flow index was negatively affected for PLA and PHB added blends. The mechanical properties were affected when more than 5 wt.% of biodegradable polymers were present. Moreover, structural changes were detected when biodegradable polymers were added to the recycled PP by means of FTIR, because of the characteristic bands of the carbonyl group (between the band 1700–1800 cm−1) appeared due to the presence of PLA, PHB or TPS. Thus, low amounts (lower than 5 wt.%) of biodegradable polymers can be introduced in the recycled PP process without affecting the overall performance of the final material intended for several applications, such as food packaging, agricultural films for farming and crop protection.


2018 ◽  
Vol 51 (3) ◽  
pp. 262-279 ◽  
Author(s):  
Yasin Kanbur ◽  
Umit Tayfun

Thermoplastic polyurethane (TPU) composites filled with fullerene in the range from 0.5 wt% to 2 wt% were fabricated using melt-compounding. Fullerene addition levels up to nearly twofold increase in tensile strength, percent elongation, and modulus of TPU. The mechanical properties are improved as modified C60 content decreases. Fullerene loadings also enhance thermal stability of TPU. Glass transition temperature decreases by the inclusion of C60 into TPU matrix. Composites exhibited the improvement for storage modulus and vibration-damping behavior. The UL-94 rating and limiting oxygen index value of TPU are also extended to higher values after C60 loadings. Adjuvant effect is observed on fire performance in which pristine C60 inclusions and higher concentrations of C60 exhibit better fire performance. Additions of C60 give identical melt flow index values with that of TPU. Modified C60 particles disperse more homogeneously than pristine ones into TPU matrix because of the improvement in interfacial interactions between fullerene and polyurethane elastomer.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2029
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Emmanouil Velidakis ◽  
Lazaros Tzounis ◽  
Nikolaos Mountakis ◽  
...  

Utilization of advanced engineering thermoplastic materials in fused filament fabrication (FFF) 3D printing process is critical in expanding additive manufacturing (AM) applications. Polypropylene (PP) is a widely used thermoplastic material, while silicon dioxide (SiO2) nanoparticles (NPs), which can be found in many living organisms, are commonly employed as fillers in polymers to improve their mechanical properties and processability. In this work, PP/SiO2 nanocomposite filaments at various concentrations were developed following a melt mixing extrusion process, and used for FFF 3D printing of specimens’ characterization according to international standards. Tensile, flexural, impact, microhardness, and dynamic mechanical analysis (DMA) tests were conducted to determine the effect of the nanofiller loading on the mechanical and viscoelastic properties of the polymer matrix. Scanning electron microscopy (SEM), Raman spectroscopy and atomic force microscopy (AFM) were performed for microstructural analysis, and finally melt flow index (MFI) tests were conducted to assess the melt rheological properties. An improvement in the mechanical performance was observed for silica loading up to 2.0 wt.%, while 4.0 wt.% was a potential threshold revealing processability challenges. Overall, PP/SiO2 nanocomposites could be ideal candidates for advanced 3D printing engineering applications towards structural plastic components with enhanced mechanical performance.


2020 ◽  
Vol 54 (28) ◽  
pp. 4359-4368 ◽  
Author(s):  
Hesham Elkawash ◽  
Seha Tirkes ◽  
Firat Hacioglu ◽  
Umit Tayfun

In this study, two kinds of mineral fillers, bentonite (BNT) and barite (BRT), were incorporated into low density polyethylene (LDPE) by extrusion process. Silane treatment was applied to BRT and BNT surfaces in order to increase their compatibility with LDPE matrix. Surface characteristics of fillers were examined by Fourier transformed infrared spectroscopy (FTIR). LDPE-based composites were prepared at a constant concentration of 10%wt for each additives. Test samples were shaped by injection molding process. Mechanical, thermo-mechanical, water repellency, melt-flow and morphological characterizations of LDPE and its composites were performed by tensile and impact tests, dynamic mechanical analysis (DMA), water absorption test, melt flow index (MFI) measurements and scanning electron microscopy (SEM) technique, respectively. Test results showed that surface treatments led to increase for final properties of composites since they promoted to stronger adhesion between minerals and LDPE matrix compared to untreated ones. Tensile and impact strength values, storage modulus and glass transition temperature of LDPE were improved by inclusion of silane treated minerals. BRT and BNT additions caused no remarkable changes with regard to MFI of LDPE. Additionally, silane modified mineral filled composites exhibited remarkable water resistance behavior. According to SEM analysis of composites, silane treated BNT and BRT containing samples displayed homogeneous dispersions into LDPE phase whereas debondings were observed for untreated BNT and BRT filled composites due to their weak adhesion to polymer matrix.


2019 ◽  
Vol 52 (8) ◽  
pp. 701-716 ◽  
Author(s):  
Najah Eselini ◽  
Seha Tirkes ◽  
Alinda Oyku Akar ◽  
Umit Tayfun

Poly (lactic acid) (PLA)-based biocomposites containing flax fiber (FF) and basalt fiber (BF) both separately and together were prepared by melt blending method at the total constant ratio of 30 wt%. Mechanical properties, thermo-mechanical characteristics, thermal stability, flow behaviors, water uptake, and morphology of composites were investigated by tensile, hardness and impact tests, dynamic mechanical analysis (DMA), thermal gravimetric analysis, melt flow index (MFI) test, water absorption, and scanning electron microscopy, respectively. Mechanical test results show that tensile strength, elongation, elastic modulus, and impact strength are extended up to higher values with increase in BF content in hybrid composites. Conversely, the presence of FF displays a negative effect in which these values drop down drastically as the FF concentration increases. On the other hand, slightly higher hardness values are obtained by the addition of FF at higher loadings. DMA analysis reveals that BF inclusion leads glass transition temperature of PLA to one point higher, but hybrid and FF containing composites shift that temperature to lower values. Storage moduli of composites are enhanced with the increase in BF concentration and remarkable decreases are observed for FF-filled composites. Hybrid composites exhibit average MFI values between PLA/FF and PLA/BF composites.


2019 ◽  
pp. 089270571988601 ◽  
Author(s):  
Rupinder Singh ◽  
Ranvijay Kumar ◽  
Pawanpreet ◽  
Mohit Singh ◽  
Jatenderpal Singh

The almond skin powder is one of the biodegradable and biocompatible food wastes that can be used as reinforcement in polylactic acid (PLA) for preparation of biomedical scaffolds/implants (for high mechanical performance) by fused filament fabrication. The present study deals with the melt processing of almond skin powder as reinforcement from 0 wt% to 5 wt% in the PLA matrix by twin-screw extrusion process. The results of the study suggested that reinforcing the almond skin powder as 2.5 wt% in the PLA matrix mechanically strengthens the feedstock filaments but the increase in the proportion up to 5 wt% reduces the mechanical strength to a significant level. A similar trend has been observed in differential scanning calorimeter observations for thermal stability analysis. As regard to the rheological property is concerned, the melt flow index shows a significant reduction with reinforcement of almond skin powder in PLA. The results are also supported by photomicrographic analysis (for surface properties) and Taguchi-based optimization of twin-screw extrusion process parameters (for multifactor optimization).


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 390
Author(s):  
Fernando Luiz Lavoie ◽  
Marcelo Kobelnik ◽  
Clever Aparecido Valentin ◽  
Érica Fernanda da Silva Tirelli ◽  
Maria de Lurdes Lopes ◽  
...  

High-density polyethylene (HDPE) geomembranes are polymeric geosynthetic materials usually applied as a liner in environmental facilities due to their good mechanical properties, good welding conditions, and excellent chemical resistance. A geomembrane’s field performance is affected by different conditions and exposures, including ultraviolet radiation, thermal and oxidative exposure, and chemical contact. This article presents an experimental study with a 1.0 mm-thick HDPE virgin geomembrane exposed by the Xenon arc weatherometer for 2160 h and the ultraviolet fluorescent weatherometer for 8760 h to understand the geomembrane’s behavior under ultraviolet exposure. The evaluation was performed using the melt flow index (MFI) test, oxidative-induction time (OIT) tests, tensile test, differential scanning calorimetry (DSC) analysis, and Fourier transform infrared spectroscopy (FTIR) analysis. The sample exposed in the Xenon arc equipment showed a tendency to increase the MFI values during the exposure time. This upward trend may indicate morphological changes in the polymer. The tensile behavior analysis showed a tendency of the sample to lose ductility, without showing brittle behavior. The samples’ OIT test results under both device exposures showed faster antioxidant depletion for the standard OIT test than the high-pressure OIT test. The DSC and FTIR analyses did not demonstrate the polymer’s changes.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Tuffaha Fathe Salem ◽  
Seha Tirkes ◽  
Alinda Oyku Akar ◽  
Umit Tayfun

AbstractChopped jute fiber (JF) surfaces were modified using alkaline, silane and eco-grade epoxy resin. Surface characteristics of jute fibers were confirmed by FTIR and EDX analyses. JF filled polyurethane elastomer (TPU) composites were prepared via extrusion process. The effect of surface modifications of JF on mechanical, thermo-mechanical, melt-flow, water uptake and morphological properties of TPU-based eco-composites were investigated by tensile and hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test, water absorption measurements and scanning electron microscopy (SEM) techniques, respectively. Mechanical test results showed that silane and epoxy treated JF additions led to increase in tensile strength, modulus and hardness of TPU. Glass transition temperature (Tg) of TPU rose up to higher values after JF inclusions regardless of treatment type. Si-JF filled TPU exhibited the lowest water absorption among composites. Surface treated JFs displayed homogeneous dispersion into TPU and their surface were covered by TPU according to SEM micro-photographs.


Sign in / Sign up

Export Citation Format

Share Document