Low-Cost Fabrication of Organic Photovoltaics and Polymer LEDs

Author(s):  
Hongseok Youn ◽  
Hyunsoo Kim ◽  
L. Jay Guo
2018 ◽  
Vol 52 ◽  
pp. 71-78 ◽  
Author(s):  
Furqan Almyahi ◽  
Thomas R. Andersen ◽  
Nathan Cooling ◽  
Natalie P. Holmes ◽  
Adam Fahy ◽  
...  

2010 ◽  
Vol 43 (11) ◽  
pp. 115101 ◽  
Author(s):  
Jun-Hyuk Park ◽  
Kyung-Jun Ahn ◽  
Kang-Il Park ◽  
Seok-In Na ◽  
Han-Ki Kim

Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1240
Author(s):  
Amanda Generosi ◽  
Marco Guaragno ◽  
Qirong Zhu ◽  
Anna Proust ◽  
Nicholas T. Barrett ◽  
...  

Organic solar cells, characterized by a symmetrical regular layered structure, are very promising systems for developing green, low cost, and flexible solar energy conversion devices. Despite the efficiencies being appealing (over 17%), the technological transfer is still limited by the low durability. Several processes, in bulk and at interface, are responsible. The quick downgrading of the performance is due to a combination of physical and chemical degradations. These phenomena induce instability and a drop of performance in working conditions. Close monitoring of these processes is mandatory to understand the degradation pathways upon device operation. Here, an unconventional approach based on Energy Dispersive X-ray Reflectivity (ED-XRR) performed in-situ is used to address the role of Wells–Dawson polyoxometalate (K6-P2W18O62, hereafter K6-P2W18) as hole transporting layer in organic photovoltaics. The results demonstrate that K6-P2W18 thin films, showing ideal bulk and interface properties and superior optical/morphological stability upon prolonged illumination, are attractive candidates for the interface of durable OPV devices.


Nanophotonics ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 371-391 ◽  
Author(s):  
Yan-Gang Bi ◽  
Jing Feng ◽  
Jin-Hai Ji ◽  
Fang-Shun Yi ◽  
Yun-Fei Li ◽  
...  

AbstractLightweight and low-cost organic photovoltaics (OPVs) hold great promise as renewable energy sources. The most critical challenge in developing high-performance OPVs is the incomplete photon absorption due to the low diffusion length of the carrier in organic semiconductors. To date, various attempts have been carried out to improve light absorption in thin photoactive layer based on optical engineering strategies. Nanostructure-induced light harvesting in OPVs offers an attractive solution to realize high-performance OPVs, via the effects of antireflection, plasmonic scattering, surface plasmon polarization, localized surface plasmon resonance and optical cavity. In this review article, we summarize recent advances in nanostructure-induced light harvesting in OPVs and discuss various light-trapping strategies by incorporating nanostructures in OPVs and the fabrication processing of the micro-patterns with high resolution, large area, high yield and low cost.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Shawn Sapp ◽  
Silvia Luebben

AbstractIn the emerging field of low-cost printed electronics there is a lack of solvent processable conducting and semiconducting materials with highly tuned and known electronic properties. Currently the best performing conductors and semiconductors are not sufficient to produce truly printable, cost competitive organic photovoltaics (OPVs). TDA Research, Inc. (TDA) has been investigating a new class of solvent processable intrinsically conducting polymers for use as charge transport and transparent conducting layers in organic electronic devices. We have also begun the manufacture of electron-deficient semiconducting polymers that may prove to be excellent acceptors in bulk hetero-junction OPVs. This paper presents a summary of the materials characterization conducted on TDA's new electronic materials and how these may address several of the pressing issues preventing the realization of low-cost, printed solar cells and flexible electronics devices.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2200 ◽  
Author(s):  
Aurelio Bonasera ◽  
Giuliana Giuliano ◽  
Giuseppe Arrabito ◽  
Bruno Pignataro

Organic Photovoltaics (OPVs) based on Bulk Heterojunction (BHJ) blends are a mature technology. Having started their intensive development two decades ago, their low cost, processability and flexibility rapidly funneled the interest of the scientific community, searching for new solutions to expand solar photovoltaics market and promote sustainable development. However, their robust implementation is hampered by some issues, concerning the choice of the donor/acceptor materials, the device thermal/photo-stability, and, last but not least, their morphology. Indeed, the morphological profile of BHJs has a strong impact over charge generation, collection, and recombination processes; control over nano/microstructural morphology would be desirable, aiming at finely tuning the device performance and overcoming those previously mentioned critical issues. The employ of compatibilizers has emerged as a promising, economically sustainable, and widely applicable approach for the donor/acceptor interface (D/A-I) optimization. Thus, improvements in the global performance of the devices can be achieved without making use of more complex architectures. Even though several materials have been deeply documented and reported as effective compatibilizing agents, scientific reports are quite fragmentary. Here we would like to offer a panoramic overview of the literature on compatibilizers, focusing on the progression documented in the last decade.


2016 ◽  
Vol 7 ◽  
pp. 149-196 ◽  
Author(s):  
Marco Notarianni ◽  
Jinzhang Liu ◽  
Kristy Vernon ◽  
Nunzio Motta

The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (1) ◽  
pp. 50-52 ◽  
Author(s):  
Christoph J. Brabec ◽  
Jens A. Hauch ◽  
Pavel Schilinsky ◽  
Christoph Waldauf

AbstractThe essential cost-driving factor for the production of classical photovoltaic devices is the expensive investment in costly semiconductor processing technologies. This unfavorable cost structure has so far prohibited the technology from having a significant impact on global energy production. Nevertheless, the continued high interest in photovoltaics originates from the fact that they represent the only truly portable renewable-energy conversion technology available today. Therefore, the potential of fabricating organic photovoltaic elements on low-cost, thin plastic substrates by standard printing and coating techniques and packaged by lamination is not only intriguing, but highly attractive from a cost standpoint. In this article, we discuss the economic and technical production aspects for organic photovoltaics.


Sign in / Sign up

Export Citation Format

Share Document