Absorption Spectrophotometric and X-Ray Diffraction Evidence for Mixed-Valence Compounds in Anhydrous Halides of Lanthanideactinide Mixtures

Author(s):  
R. G. Haire ◽  
J. P. Young ◽  
J. R. Peterson ◽  
R. L. Fellows
2004 ◽  
Vol 59 (7) ◽  
pp. 771-781 ◽  
Author(s):  
Gero Frisch ◽  
Caroline Röhr

The title compounds were synthesized at a temperature of 775 K via reaction of Fe2O3 with elemental cesium and rubidium alone or in combination with their hyperoxides AO2 where required by stoichiometry. The structures of the dark-red crystals have been determined by single crystal x-ray diffraction (Cs[FeO2]: cubic, space group Fd3m, a = 839.2(2) pm, Z = 8, R1 = 0.0547 and A5[Fe3O6] (A = Cs: orthorhombic, space group P212121, a = 861.8(2), b = 870.7(2), c = 1658.7(3) pm, Z = 4, R1 = 0.0617 and A = Rb: tetragonal, space group I4̅2d, a = 862.01(8), c= 1504.7(2) pm, Z =4, R1= 0.0334). These three compounds contain three-dimensional networks [FeO2], in the case of the ideal stuffed cristobalite composed of corner-sharing tetrahedra [FeO4/2], in the case of the new mixed valence compounds A5[Fe3O6] formed by corner-sharing of tetrahedra [FeIIIO4/2] and triangles [FeIIOO2/2] in a 1:2 ratio. The crystal structure of the cation rich compound Cs8[Fe2O7] (monoclinic, space group P21/c, a = 722.32(12), b = 1789.0(3), c = 733.88(12) pm, β =118.976(3)°, Z = 4, R1=0.0287) exhibits di-ferrate anions [Fe2O7]6− composed of two cornersharing [FeIIIO4] tetrahedra with a linear Fe-O-Fe bridge.


Author(s):  
Tianlei Ma ◽  
Marek Nikiel ◽  
Andrew G. Thomas ◽  
Mohamed Missous ◽  
David J. Lewis

AbstractIn this report, we prepared transparent and conducting undoped and molybdenum-doped tin oxide (Mo–SnO2) thin films by aerosol-assisted chemical vapour deposition (AACVD). The relationship between the precursor concentration in the feed and in the resulting films was studied by energy-dispersive X-ray spectroscopy, suggesting that the efficiency of doping is quantitative and that this method could potentially impart exquisite control over dopant levels. All SnO2 films were in tetragonal structure as confirmed by powder X-ray diffraction measurements. X-ray photoelectron spectroscopy characterisation indicated for the first time that Mo ions were in mixed valence states of Mo(VI) and Mo(V) on the surface. Incorporation of Mo6+ resulted in the lowest resistivity of $$7.3 \times 10^{{ - 3}} \Omega \,{\text{cm}}$$ 7.3 × 10 - 3 Ω cm , compared to pure SnO2 films with resistivities of $$4.3\left( 0 \right) \times 10^{{ - 2}} \Omega \,{\text{cm}}$$ 4.3 0 × 10 - 2 Ω cm . Meanwhile, a high transmittance of 83% in the visible light range was also acquired. This work presents a comprehensive investigation into impact of Mo doping on SnO2 films synthesised by AACVD for the first time and establishes the potential for scalable deposition of SnO2:Mo thin films in TCO manufacturing. Graphical abstract


2021 ◽  
Author(s):  
Isam M. Arafa ◽  
Mazin Y. Shatnawi ◽  
Yousef N. Obeidallah ◽  
Ahmed K. Hijazi ◽  
Yaser A . Yousef

Abstract Four transition metal borohydrides (MTBHs, MT = Ni, Fe, Co, and Cu) were prepared by sonicating a mixture of the desired MT salt with excess NaBH4 in a nonaqueous DMF/CH3OH media. The process afforded bimetallic (Ni-BH4), trimetallic (Fe-BH4, Co-BH4), and mixed-valence (Cu-H, Cu-BH4) amorphous, ferromagnetic nanoparticles as identified by thermal, ATR-IR, X-Ray diffraction, and magnetic susceptibility techniques. The electrical conductivity (σ) of cold-pressed discs of these MTBHs shows a nonlinear increase while their thermal conductivity (κ) decreases in the temperature range of 303 ≤ T ≤ 373 K. The thermal energy transport occurs through phonon lattice dynamics rather than electronic. The σ/κ ratio shows a nonlinear steep increase from 9.4 to 270 KV-2 in Ni-BH4, while a moderate-weak increase is observed for Fe-BH4, Co-BH4, and Cu-BH4. Accordingly, the corresponding thermoelectric (TE) parameters S, PF, ZT, and η were evaluated. All TE data shows that the bimetallic Ni-BH4 (S, 80 μVK-1; PF, 259 μWm-1K-2; ZT 0.64; η, 2.56%) is a better TE semiconductor than the other three MT-BHs investigated in this study. Our findings show that Ni-BH4 is a promising candidate to exploit low-temperature waste heat from body heat, sunshine, and small domestic devices for small-scale TE applications.


2014 ◽  
Vol 70 (a1) ◽  
pp. C901-C901
Author(s):  
Solveig Madsen ◽  
Jacob Overgaard ◽  
Bo Iversen

Intramolecular electron transfer (ET) in mixed valence (MV) oxo-centered [FeiiFeiii2O(carboxylate)6(ligand)3]·solvent complexes is highly dependent on temperature, on the nature of the ligands, and on the presence of crystal solvent molecules [1]. Whereas the effects of temperature, crystal solvent, and ligand variation on the details of the ET have been explored thoroughly, the effect of pressure is less well described [2]. The effect of pressure on the ET in MV Fe3O(cyanoacetate)6(water)3has been investigated with single crystal X-ray diffraction and Mössbauer spectroscopy. Previous multi-temperature studies have shown that at room temperature the ET between the three Fe sites is fast and the observed structure of the Fe3core is a perfectly equilateral triangle [3]. Cooling the complex below 130 K induces a phase transition as the ET slows down. Below 120 K the Fe3core is distorted due to the localization of the itinerant electron on one of the three Fe sites in the triangle (the complex is then in the valence trapped state). The valence trapping is complete within a temperature interval of just 10 K. The abruptness of the transition has been attributed to the extended hydrogen bond network involving water ligands and cyano groups, promoting intermolecular cooperative effects. The high-pressure X-ray diffraction data show that there is a 900flip of half the cyano groups at 3.5 GPa, which dramatically changes the hydrogen bond network. At a slightly higher pressure, a phase transition is found to occur. The five single crystals investigated all broke into minor fragments at the transition; however triclinic unit cells, similar to the low temperature unit cell, could be indexed from selected spots. Additional evidence that the complex is valence trapped comes from high pressure Mössbauer spectra measured above the phase transition (4 GPa). The relationship between valence trapping and the structural changes will in this work be highlighted using void space and Hirshfeld surface analysis.


2002 ◽  
Vol 57 (10) ◽  
pp. 1090-1100
Author(s):  
Franziska Emmerling ◽  
Caroline Röhr

AbstractThe title compounds were synthesized at a temperature of 700 °C via oxidation of elemental Bi with the hyperoxides AO2 or via reaction of the elemental alkali metals A with Bi2O3. Their crystal structures have been determined by single crystal x-ray diffraction. They are dominated by two possible surroundings of Bi by O, the ψ-trigonal-bipyramidal three (B) and the ψ-tetrahedral four (T) coordination. Cs6Bi4O9 (triclinic, spacegroup P1̄, a = 813.82(12), b = 991.60(14), c = 1213.83(18) pm, α = 103.658(2), β = 93.694(3), γ = 91.662(3)°, Z = 2) contains centrosymmetric chain segmentes [Bi8O18]12- with six three- (T) and two four-coordinated (B) Bi(III) centers. K9Bi5O13 (monoclinic, spacegroup P21/c, a = 1510.98(14), b = 567.59(5), c = 2685.6(2) pm, β = 111.190(2)°, Z = 4) is a mixed valence compound with isolated [BivO4]3- tetrahedra and chains [BiIII4O9]6- of two T and two B coordinated Bi. In the compounds A2Bi4O7 (A = Rb/Cs: monoclinic, C2/c, a = 2037.0(3) / 2130.6(12), b = 1285.5(2) / 1301.9(7), c = 1566.6(2) / 1605.6(9) pm, β = 94.783(3) / 95.725(9)°, Z = 8) ribbons [Bi4O6O2/2]2- are formed, which are condensed to form a three-dimensional framework.


2019 ◽  
Vol 83 (4) ◽  
pp. 539-549 ◽  
Author(s):  
Owen P. Missen ◽  
Anthony R. Kampf ◽  
Stuart J. Mills ◽  
Robert M. Housley ◽  
John Spratt ◽  
...  

ABSTRACTThe crystal structure of tlapallite has been determined using single-crystal X-ray diffraction and supported by electron probe micro-analysis, powder diffraction and Raman spectroscopy. Tlapallite is trigonal, space groupP321, witha= 9.1219(17) Å,c= 11.9320(9) Å andV= 859.8(3) Å3, and was refined toR1= 0.0296 for 786 reflections withI> 2σ(I). This study resulted from the discovery of well-crystallised tlapallite at the Wildcat prospect, Utah, USA. The chemical formula of tlapallite has been revised to (Ca,Pb)3CaCu6[Te4+3Te6+O12]2(Te4+O3)2(SO4)2·3H2O, or more simply (Ca,Pb)3CaCu6Te4+8Te6+2O30(SO4)2·3H2O, from H6(Ca,Pb)2(Cu,Zn)3(TeO3)4(TeO6)(SO4). The tlapallite structure consists of layers containing distorted Cu2+O6octahedra, Te6+O6octahedra and Te4+O4disphenoids (which together form the new mixed-valence phyllotellurate anion [Te4+3Te6+O12]12−), Te4+O3trigonal pyramids and CaO8polyhedra. SO4tetrahedra, Ca(H2O)3O6polyhedra and H2O groups fill the space between the layers. Tlapallite is only the second naturally occurring compound containing tellurium in both the 4+and 6+oxidation states with a known crystal structure, the other being carlfriesite, CaTe4+2Te6+O8. Carlfriesite is the predominant secondary tellurium mineral at the Wildcat prospect. We also present an updated structure for carlfriesite, which has been refined toR1= 0.0230 for 874 reflections withI> 2σ(I). This updated structural refinement improves upon the one reported previously by refining all atoms anisotropically and presenting models of bond valence and Te4+secondary bonding.


2012 ◽  
Vol 512-515 ◽  
pp. 1434-1437
Author(s):  
Xing Ao Li ◽  
Peng Li ◽  
Yong Tao Li ◽  
Jian Ping Yang ◽  
Qiu Fei Bai ◽  
...  

Bi0.95Eu0.05Fe0.95Co0.05O3 Nanoparticles sample was prepared by sol-gel process. The microstructure of samples was analysised by X-ray diffraction(XRD), the result indicated that it was the single phase rhombohedral perovskite structure. The morphology of samples was measured by scanning electron microsopy(SEM), the SEM photograph of samples indicated that the nanoparticles of Bi0.95Eu0.05Fe0.95Co0.05O3 sample were small than that of BiFeO3. The valence states of Fe ions in the samples was analysised by the X-ray absorption spectroscopy(XAS). The XAS of Fe2p showed that it was the mixed valence states (Fe2+ and Fe3+) of Fe ions in samples, and the binding energy of Bi0.95Eu0.05Fe0.95Co0.05O3 was bigger than that of BiFeO3.The magnetic characteristics of the samples were measured by vibrating sample magnetometer (VSM),the results showed that the weak metamagnetism were obtained from clear hysteresis loop and the magnetic saturation reached 0.408emu/g,compared with BiFeO3 sample, the magnetic properties were significantly enhanced.


Sign in / Sign up

Export Citation Format

Share Document